dr inż. Magdalena Lemańska
Zatrudnienie
- Adiunkt w Instytut Matematyki Stosowanej
Publikacje
Filtry
wszystkich: 46
Katalog Publikacji
Rok 2024
-
angielski
PublikacjaA subset D of V (G) is a dominating set of a graph G if every vertex of V (G) − D has at least one neighbour in D; let the domination number γ(G) be the minimum cardinality among all dominating sets in G. We say that a graph G is γ-q-critical if subdividing any q edges results in a graph with domination number greater than γ(G) and there exists a set of q − 1 edges such that subdividing these edges results in a graph with domination...
-
Graphs with isolation number equal to one third of the order
PublikacjaA set D of vertices of a graph G is isolating if the set of vertices not in D and with no neighbor in D is independent. The isolation number of G, denoted by \iota(G) , is the minimum cardinality of an isolating set of G. It is known that \iota(G) \leq n/3 , if G is a connected graph of order n, , distinct from C_5 . The main result of this work is the characterisation of unicyclic and block graphs of order n with isolating number...
Rok 2023
-
Restrained differential of a graph
PublikacjaGiven a graph $G=(V(G), E(G))$ and a vertex $v\in V(G)$, the {open neighbourhood} of $v$ is defined to be $N(v)=\{u\in V(G) :\, uv\in E(G)\}$. The {external neighbourhood} of a set $S\subseteq V(G)$ is defined as $S_e=\left(\cup_{v\in S}N(v)\right)\setminus S$, while the \emph{restrained external neighbourhood} of $S$ is defined as $S_r=\{v\in S_e : N(v)\cap S_e\neq \varnothing\}$. The restrained differential of a graph $G$ is...
Rok 2022
-
On proper (1,2)‐dominating sets in graphs
PublikacjaIn 2008, Hedetniemi et al. introduced the concept of (1,)-domination and obtained some interesting results for (1,2) -domination. Obviously every (1,1) -dominating set of a graph (known as 2-dominating set) is (1,2) -dominating; to distinguish these concepts, we define a proper (1,2) -dominating set of a graph as follows: a subset is a proper (1,2) -dominating set of a graph if is (1,2) -dominating and it is not a (1,1) -dominating...
Rok 2021
-
Common Independence in Graphs
PublikacjaAbstract: The cardinality of a largest independent set of G, denoted by α(G), is called the independence number of G. The independent domination number i(G) of a graph G is the cardinality of a smallest independent dominating set of G. We introduce the concept of the common independence number of a graph G, denoted by αc(G), as the greatest integer r such that every vertex of G belongs to some independent subset X of VG with |X|...
-
Independent Domination Subdivision in Graphs
PublikacjaA set $S$ of vertices in a graph $G$ is a dominating set if every vertex not in $S$ is adjacent to a vertex in~$S$. If, in addition, $S$ is an independent set, then $S$ is an independent dominating set. The independent domination number $i(G)$ of $G$ is the minimum cardinality of an independent dominating set in $G$. The independent domination subdivision number $\sdi(G)$ is the minimum number of edges that must be subdivided (each...
-
Isolation Number versus Domination Number of Trees
PublikacjaIf G=(VG,EG) is a graph of order n, we call S⊆VG an isolating set if the graph induced by VG−NG[S] contains no edges. The minimum cardinality of an isolating set of G is called the isolation number of G, and it is denoted by ι(G). It is known that ι(G)≤n3 and the bound is sharp. A subset S⊆VG is called dominating in G if NG[S]=VG. The minimum cardinality of a dominating set of G is the domination number, and it is denoted by γ(G)....
-
Secure Italian domination in graphs
PublikacjaAn Italian dominating function (IDF) on a graph G is a function f:V(G)→{0,1,2} such that for every vertex v with f(v)=0, the total weight of f assigned to the neighbours of v is at least two, i.e., ∑u∈NG(v)f(u)≥2. For any function f:V(G)→{0,1,2} and any pair of adjacent vertices with f(v)=0 and u with f(u)>0, the function fu→v is defined by fu→v(v)=1, fu→v(u)=f(u)−1 and fu→v(x)=f(x) whenever x∈V(G)∖{u,v}. A secure Italian dominating...
-
Some variants of perfect graphs related to the matching number, the vertex cover and the weakly connected domination number
PublikacjaGiven two types of graph theoretical parameters ρ and σ, we say that a graph G is (σ, ρ)- perfect if σ(H) = ρ(H) for every non-trivial connected induced subgraph H of G. In this work we characterize (γw, τ )-perfect graphs, (γw, α′)-perfect graphs, and (α′, τ )-perfect graphs, where γw(G), τ (G) and α′(G) denote the weakly connected domination number, the vertex cover number and the matching number of G, respectively. Moreover,...
Rok 2020
-
Certified domination
PublikacjaImagine that we are given a set D of officials and a set W of civils. For each civil x ∈ W, there must be an official v ∈ D that can serve x, and whenever any such v is serving x, there must also be another civil w ∈ W that observes v, that is, w may act as a kind of witness, to avoid any abuse from v. What is the minimum number of officials to guarantee such a service, assuming a given social network? In this paper, we introduce...
-
On the connected and weakly convex domination numbers
PublikacjaIn this paper we study relations between connected and weakly convex domination numbers. We show that in general the difference between these numbers can be arbitrarily large and we focus on the graphs for which a weakly convex domination number equals a connected domination number. We also study the influence of the edge removing on the weakly convex domination number, in particular we show that a weakly convex domination number...
-
Reconfiguring Minimum Dominating Sets in Trees
PublikacjaWe provide tight bounds on the diameter of γ-graphs, which are reconfiguration graphs of the minimum dominating sets of a graph G. In particular, we prove that for any tree T of order n ≥ 3, the diameter of its γ-graph is at most n/2 in the single vertex replacement adjacency model, whereas in the slide adjacency model, it is at most 2(n − 1)/3. Our proof is constructive, leading to a simple linear-time algorithm for determining...
Rok 2019
-
Graphs with equal domination and certified domination numbers
PublikacjaA setDof vertices of a graphG= (VG,EG) is a dominating set ofGif every vertexinVG−Dis adjacent to at least one vertex inD. The domination number (upper dominationnumber, respectively) ofG, denoted byγ(G) (Γ(G), respectively), is the cardinality ofa smallest (largest minimal, respectively) dominating set ofG. A subsetD⊆VGis calleda certified dominating set ofGifDis a dominating set ofGand every vertex inDhas eitherzero...
-
On the super domination number of lexicographic product graphs
PublikacjaThe neighbourhood of a vertexvof a graphGis the setN(v) of all verticesadjacent tovinG. ForD⊆V(G) we defineD=V(G)\D. A setD⊆V(G) is called a super dominating set if for every vertexu∈D, there existsv∈Dsuch thatN(v)∩D={u}. The super domination number ofGis theminimum cardinality among all super dominating sets inG. In this article weobtain closed formulas and tight bounds for the super dominating number oflexicographic product...
Rok 2018
-
Coronas and Domination Subdivision Number of a Graph
PublikacjaIn this paper, for a graph G and a family of partitions P of vertex neighborhoods of G, we define the general corona G ◦P of G. Among several properties of this new operation, we focus on application general coronas to a new kind of characterization of trees with the domination subdivision number equal to 3.
-
Total domination in versus paired-domination in regular graphs
PublikacjaA subset S of vertices of a graph G is a dominating set of G if every vertex not in S has a neighbor in S, while S is a total dominating set of G if every vertex has a neighbor in S. If S is a dominating set with the additional property that the subgraph induced by S contains a perfect matching, then S is a paired-dominating set. The domination number, denoted γ(G), is the minimum cardinality of a dominating set of G, while the...
-
Total Domination Versus Domination in Cubic Graphs
PublikacjaA dominating set in a graph G is a set S of vertices of G such that every vertex not in S has a neighbor in S. Further, if every vertex of G has a neighbor in S, then S is a total dominating set of G. The domination number,γ(G), and total domination number, γ_t(G), are the minimum cardinalities of a dominating set and total dominating set, respectively, in G. The upper domination number, \Gamma(G), and the upper total domination...
Rok 2017
-
Similarities and Differences Between the Vertex Cover Number and the Weakly Connected Domination Number of a Graph
PublikacjaA vertex cover of a graph G = (V, E) is a set X ⊂ V such that each edge of G is incident to at least one vertex of X. The ve cardinality of a vertex cover of G. A dominating set D ⊆ V is a weakly connected dominating set of G if the subgraph G[D]w = (N[D], Ew) weakly induced by D, is connected, where Ew is the set of all edges having at least one vertex in D. The weakly connected domination number γw(G) of G is the minimum cardinality...
Rok 2016
-
Domination-Related Parameters in Rooted Product Graphs
PublikacjaAbstract A set S of vertices of a graph G is a dominating set in G if every vertex outside of S is adjacent to at least one vertex belonging to S. A domination parameter of G is related to those sets of vertices of a graph satisfying some domination property together with other conditions on the vertices of G. Here, we investigate several domination-related parameters in rooted product graphs.
-
Some variations of perfect graphs
PublikacjaWe consider (ψk−γk−1)-perfect graphs, i.e., graphs G for which ψk(H) =γk−1(H) for any induced subgraph H of G, where ψk and γk−1 are the k -path vertex cover number and the distance (k−1)-domination number, respectively. We study (ψk−γk−1)-perfect paths, cycles and complete graphs for k≥2. Moreover, we provide a complete characterisation of (ψ2−γ1)-perfect graphs describing the set of its forbidden induced subgraphs and providing...
-
The convex domination subdivision number of a graph
PublikacjaLet G = (V;E) be a simple graph. A set D\subset V is a dominating set of G if every vertex in V - D has at least one neighbor in D. The distance d_G(u, v) between two vertices u and v is the length of a shortest (u, v)-path in G. An (u, v)-path of length d_G(u; v) is called an (u, v)-geodesic. A set X\subset V is convex in G if vertices from all (a, b)-geodesics belong to X for any two vertices a, b \in X. A set X is a convex dominating...
-
Weakly convex and convex domination numbers of some products of graphs
PublikacjaIf $G=(V,E)$ is a simple connected graph and $a,b\in V$, then a shortest $(a-b)$ path is called a $(u-v)$-{\it geodesic}. A set $X\subseteq V$ is called {\it weakly convex} in $G$ if for every two vertices $a,b\in X$ exists $(a-b)$- geodesic whose all vertices belong to $X$. A set $X$ is {\it convex} in $G$ if for every $a,b\in X$ all vertices from every $(a-b)$-geodesic belong to $X$. The {\it weakly convex domination number}...
-
Weakly convex domination subdivision number of a graph
PublikacjaA set X is weakly convex in G if for any two vertices a; b \in X there exists an ab–geodesic such that all of its vertices belong to X. A set X \subset V is a weakly convex dominating set if X is weakly convex and dominating. The weakly convex domination number \gamma_wcon(G) of a graph G equals the minimum cardinality of a weakly convex dominating set in G. The weakly convex domination subdivision number sd_wcon (G) is the minimum...
Rok 2015
-
INFLUENCE OF A VERTEX REMOVING ON THE CONNECTED DOMINATION NUMBER – APPLICATION TO AD-HOC WIRELESS NETWORKS
PublikacjaA minimum connected dominating set (MCDS) can be used as virtual backbone in ad-hoc wireless networks for efficient routing and broadcasting tasks. To find the MCDS is an NP- complete problem even in unit disk graphs. Many suboptimal algorithms are reported in the literature to find the MCDS using local information instead to use global network knowledge, achieving an important reduction in complexity. Since a wireless network...
-
Super Dominating Sets in Graphs
PublikacjaIn this paper some results on the super domination number are obtained. We prove that if T is a tree with at least three vertices, then n2≤γsp(T)≤n−s, where s is the number of support vertices in T and we characterize the extremal trees.
-
TOTAL DOMINATION MULTISUBDIVISION NUMBER OF A GRAPH
PublikacjaThe domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msd_t (G) of a graph G and we show that for any connected graph G of order at least two, msd_t (G) ≤ 3. We show that for trees the total domination...
Rok 2014
-
Bondage number of grid graphs
PublikacjaThe bondage number b(G) of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than the domination number of G. Here we study the bondage number of some grid-like graphs. In this sense, we obtain some bounds or exact values of the bondage number of some strong product and direct product of two paths.
-
Geometrical versus analytical approach in problem solving- an exploatory study
PublikacjaAbstract. In this study we analyse the geometrical visualization as a part of the process of solution. In total 263 students in the first year of study at three different universities in three different countries (Poland, Slovakia and Spain) were asked to solve four mathematical problems. The analysis of the results of all students showed that geometrical visualization for problems where there is a possibility to choose different ways...
-
On the partition dimension of trees
PublikacjaGiven an ordered partition Π={P1,P2,…,Pt} of the vertex set V of a connected graph G=(V,E), the partition representation of a vertex v∈V with respect to the partition Π is the vector r(v|Π)=(d(v,P1),d(v,P2),…,d(v,Pt)), where d(v,Pi) represents the distance between the vertex vv and the set Pi. A partition Π of V is a resolving partition of G if different vertices of G have different partition representations, i.e., for every...
Rok 2012
-
Influence of edge subdivision on the convex domination number
PublikacjaWe study the influence of edge subdivision on the convex domination number. We show that in general an edge subdivision can arbitrarily increase and arbitrarily decrease the convex domination number. We also find some bounds for unicyclic graphs and we investigate graphs G for which the convex domination number changes after subdivision of any edge in G.
-
Nordhaus-Gaddum results for the convex domination number of a graph
PublikacjaPraca dotyczy nierówności typu Nordhausa-Gadduma dla dominowania wypukłego.
-
The limit case of a domination property
PublikacjaPraca dotyczy dolnego ograniczenia liczby dominowania w grafach, ze względu na ilość wierzchołków oraz największą liczbę liści w drzewie spinającym.
Rok 2011
-
Convex universal fixers
PublikacjaPraca dotyczy dominowania wypukłego w grafach pryzmowych.
Rok 2010
-
A note on the weakly convex and convex domination numbers of a torus
PublikacjaW pracy określone są liczby liczby dominowania i dominowania wypukłego torusów, czyli iloczynów kartezjańskich dwóch cykli.
-
Nordhaus-Gaddum results for the weakly convex domination number of a graph
PublikacjaArtykuł dotyczy ograniczenia z góry i z dołu (ze względu na ilość wierzchołków) sumy i iloczynu liczb dominowania wypukłego grafu i jego dopełnienia.
-
Strong weakly connected domination subdivisible graphs
PublikacjaArtykuł dotyczy wpływu podziału krawędzi na liczbę dominowania słabo spójnego. Charakteryzujemy grafy dla których podział dowolnej krawędzi zmienia liczbę dominowania słabo spójnego oraz grafy dla których podział dowolnych dwóch krawędzi powoduje zmianę liczby dominowania słabo spójnego.
Rok 2009
-
Weakly connected domination stable trees [online]
PublikacjaPraca dotyczy pełnej charakteryzacji drzew stabilnych ze względu na liczbę dominowania słabo spójnego.
Rok 2008
-
Weakly connected domination critical graphs
PublikacjaPraca dotyczy niektórych klas grafów krytycznych ze względu na liczbę dominowania słabo spójnego.
Rok 2007
-
Lower bound on the weakly connected domination number of a tree
PublikacjaPraca dotyczy dolnego ograniczenia liczby dominowania słabo spójnego w drzewach (ograniczenie ze względu na ilość wierzchołków i ilość wierzchołków końcowych w drzewie).
Rok 2006
-
Domination numbers in graphs with removed edge or set of edges
PublikacjaW artykule przedstawiony jest wpływ usuwania krawędzi lub zbioru krawędzi na liczby dominowania spójnego i słabo spójnego.
-
Dominowanie w grafach
PublikacjaW pracy rozważanych jest pięć liczb dominowania: klasyczna liczba dominowania, liczba dominowania spójnego, liczba dominowania słabo spójnego, liczba dominowania słabo wypukłego i liczba dominowania wypukłego. Rozważane są pewne ograniczenia na liczby dominowania, równości między poszczególnymi liczbami, wpływ usuwania krawędzi lub zbioru krawędzi na liczby dominowania i NP-zupełność problemów dominowania.
-
Graphs with convex domination number close to their order
PublikacjaW pracy opisane są grafy z liczbą dominowania wypukłego bliską ilości ich wierzchołków.
-
Lower bound on the distance k-domination number of a tree
PublikacjaW artykule przedstawiono dolne ograniczenie na liczbę k-dominowania w drzewach oraz scharakteryzowano wszystkie grafy ekstremalne.
-
On the doubly connected domination number of a graph
PublikacjaW pracy została zdefiniowana liczba dominowania podwójnie spójnego i przedstawiono jej podstawowe własności.
Rok 2004
-
Lower bound on the domination number of a tree.
PublikacjaW pracy przedstawiono dolne ograniczenie na liczbę dominowania w drzewach oraz przedstawiono pełną charakterystykę grafów ekstremalnych.
-
Weakly convex and convex domination numbers.
PublikacjaW artykule przedstawione są nowo zdefiniowane liczby dominowania wypukłego i słabo wypukłego oraz ich porównanie z innymi liczbami dominowania. W szczególności, rozważana jest równość liczby dominowania spójnego i wypukłego dla grafów kubicznych.
wyświetlono 3084 razy