Filtry
wszystkich: 550
Wyniki wyszukiwania dla: aircraft operation, classification, neural networks
-
Neural Network-Based Sequential Global Sensitivity Analysis Algorithm
PublikacjaPerforming global sensitivity analysis (GSA) can be challenging due to the combined effect of the high computational cost, but it is also essential for engineering decision making. To reduce this cost, surrogate modeling such as neural networks (NNs) are used to replace the expensive simulation model in the GSA process, which introduces the additional challenge of finding the minimum number of training data samples required to...
-
Performance Analysis of the OpenCL Environment on Mobile Platforms
PublikacjaToday’s smartphones have more and more features that so far were only assigned to personal computers. Every year these devices are composed of better and more efficient components. Everything indicates that modern smartphones are replacing ordinary computers in various activities. High computing power is required for tasks such as image processing, speech recognition and object detection. This paper analyses the performance of...
-
A comparative analysis of the effectiveness of corporate bankruptcy prediction models based on financial ratios: Evidence from Colombia, 2008 to 2015
PublikacjaLogit and discriminant analyses have been used for corporate bankruptcy prediction in several studies since the last century. In recent years there have been dozens of studies comparing the several models available, including the ones mentioned above and also probit, artificial neural networks, support vector machines, among others. For the first time for Colombia, this paper presents a comparative analysis of the effectiveness...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublikacjaThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
Hybrid Expert System for Computer-Aided Design of Ship Thruster Subsystems
PublikacjaThe article presents an expert system supporting the design of ship's power subsystems, in particular the thruster subsystem. The proposed hybrid expert system uses the results of simulation tests as the additional source of knowledge. The results of system operation are collated in a report which can be used as part of ship design description. The work oriented on developing the expert system is the continuation of the research...
-
The voltage on bus bars of the main switchboard of the ferry electrical power system during maneuvering
Dane BadawczeThe dataset is part of the research results on the quality of supply voltage on bus bars of the main switchboard of the ship's electrical power system in different states of ship exploitation. The attached dataset contains the measurement results carried out onboard the ferry during maneuvering.
-
Data governance: Organizing data for trustworthy Artificial Intelligence
PublikacjaThe rise of Big, Open and Linked Data (BOLD) enables Big Data Algorithmic Systems (BDAS) which are often based on machine learning, neural networks and other forms of Artificial Intelligence (AI). As such systems are increasingly requested to make decisions that are consequential to individuals, communities and society at large, their failures cannot be tolerated, and they are subject to stringent regulatory and ethical requirements....
-
A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels
PublikacjaBiodiesel has been emerging as a potential and promising biofuel for the strategy of reducing toxic emissions and improving engine performance. Computational methods aiming to offer numerical solutions were inevitable as a study methodology which was sometimes considered the only practical method. Artificial neural networks (ANN) were data-processing systems, which were used to tackle many issues in engineering and science, especially...
-
The Influence of Selecting Regions from Endoscopic Video Frames on The Efficiency of Large Bowel Disease Recognition Algorithms
PublikacjaThe article presents our research in the field of the automatic diagnosis of large intestine diseases on endoscopic video. It focuses on the methods of selecting regions of interest from endoscopic video frames for further analysis by specialized disease recognition algorithms. Four methods of selecting regions of interest have been discussed: a. trivial, b. with the deletion of characteristic, endoscope specific additions to the...
-
Online sound restoration system for digital library applications
PublikacjaAudio signal processing algorithms were introduced to the new online non-commercial service for audio restoration intended to enhance the content of digitized audio repositories. Missing or distorted audio samples are predicted using neural networks and a specific implementation of the Jannsen interpolation method based on the autoregressive model (AR) combined with the iterative restoring of missing signal samples. Since the distortion...
-
Utilising AI Models to Analyse the Relationship between Battlefield Developments in the Russian-Ukrainian War and Fluctuations in Stock Market Values
PublikacjaThis study examines the impact of battlefield developments in the ongoing Russian–Ukrainian war, which to date has lasted over 1000 days, on the stock prices of defence corporations such as BAE Systems, Booz Allen Hamilton, Huntington Ingalls, and Rheinmetall AG. Stock prices were analysed alongside sentiment data extracted from news articles, and processed using machine learning models leveraging natural...
-
Practical Trial for Low-Energy Effective Jamming on Private Networks With 5G-NR and NB-IoT Radio Interfaces
PublikacjaFourth-generation (4G) mobile networks are successively replaced by fifth-generation (5G) ones, based on the new releases of the 3rd Generation Partnership Project (3GPP) standard. 5G generation is dedicated to civilian users and the conducted analytical work shows that it has numerous technological gaps that prevent its direct implementation in military communications systems. However, the recent armed world conflicts showed that...
-
Prognozowanie wpływu drgań komunikacyjnych na budynki mieszkalne za pomocą sztucznych sieci neuronowych i maszyn wektorów wspierających
PublikacjaDrgania komunikacyjne mogą stanowić duże obciążenie eksploatacyjne budynku, powodując zarysowania i spękania tynków, odpadanie wypraw, zarysowania konstrukcji, pękanie elementów konstrukcji lub nawet zawalenie się budynku. Pomiary drgań na rzeczywistych konstrukcjach są pracochłonne i kosztowne, a co ważne nie w każdym przypadku są one uzasadnione. Celem pracy jest analiza autorskiego algorytmu, dzięki któremu z dużym prawdopodobieństwem...
-
TEST FOR ASSESSING THE ENERGY EFFICIENCY OF VEHICLES WITH INTERNAL COMBUSTION ENGINES
PublikacjaThe most popular method for assessing the energy efficiency of vehicles is to compare the fuel consumption achieved in the conditions of selected approval test. Operating conditions are defined using the speed profiles, usually for only two categories: urban and extra-urban driving. Assessing the energy efficiency of vehicles should be performed using a more detailed classification of conditions. Presented results of comparison...
-
Study on CPU and RAM Resource Consumption of Mobile Devices using Streaming Services
PublikacjaStreaming multimedia services have become very popular in recent years, due to the development of wireless networks. With the growing number of mobile devices worldwide, service providers offer dedicated applications that allow to deliver on-demand audio and video content anytime and everywhere. The aim of this study was to compare different streaming services and investigate their impact on the CPU and RAM resources, with respect...
-
Low current transformer utilizing Co-based amorphous alloys
PublikacjaMetal oxide surge arresters have been widely used for protection of power system networks against overvoltages due to atmospheric discharges or malfunction of devices connected to the network. During its operation a surge arrester structure is degradated, what can be observed as an increase of a surge arrester leakage current. Paper presents an implementation of a new, high-permeability, Co64Fe4Ni1Si15B14 amorphous alloy as a current...
-
Low Current Transformer Utilizing Co-Based Amorphous Alloys
PublikacjaMetal oxide surge arresters have been widely used for protection of power system networks against overvoltages due to atmospheric discharges or malfunction of devices connected to the network. During its operation a surge arrester structure is degradated, what can be observed as an increase of a surge arrester leakage current. Paper presents an implementation of a new, high-permeability, Co64Fe4Ni1Si15B14 amorphous alloy as a current...
-
Optimization of Division and Reconfiguration Locations of the Medium-Voltage Power Grid Based on Forecasting the Level of Load and Generation from Renewable Energy Sources
PublikacjaThe article addresses challenges in optimizing the operation of medium voltage networks, emphasizing optimizing network division points and selecting the best network configuration for minimizing power and energy losses. It critically reviews recent research on the issue of network configuration optimization. The optimization of the medium voltage power grid reconfiguration process was carried out using known optimization tools....
-
Preprocessing of Document Images Based on the GGD and GMM for Binarization of Degraded Ancient Papyri Images
PublikacjaThresholding of document images is one of the most relevant operations that influence the final results of their further analysis. Although many image binarization methods have been proposed during recent several years, starting from global thresholding, through local and adaptive methods, to more sophisticated multi-stage algorithms and the use of deep convolutional neural networks, proper thresholding of degraded historical...
-
University Students’ Research on Artificial Intelligence and Knowledge Management. A Review and Report of Multi-case Studies
PublikacjaLeading technologies are very attractive for students preparing their theses as the completion of their studies. Such an orientation of students connected with professional experiences seems to be a crucial motivator in the research in the management and business areas where these technologies condition the development of professional activities. The goal of the paper is the analysis of students’ thesis topics defended in the last...
-
Damage Detection Strategies in Structural Health Monitoring of Overhead Power Transmission System
PublikacjaOverhead power transmission lines, their supporting towers, insulators and other elements create a highly distributed system that is vulnerable to damage. Typical damage scenarios cover cracking of foundation, breakage of insulators, loosening of rivets, as well as cracking and breakage of lines. Such scenarios may result from various factors: groundings, lightning strikes, floods, earthquakes, aeolian vibrations, conductors galloping,...
-
Problems of modelling toxic compounds emitted by a marine internal combustion engine for the evaluation of its structure parameters
PublikacjaThe paper presents the possibility of using an analytical study of the engine exhaust ignition to evaluate the technical condition of the selected components. Software tools available for the analysis of experimental data commonly use multiple regression model that allows the study of the effects and iterations between model input quantities and one output variable. The use of multi-equation models gives a lot of freedom in the...
-
Investigating Feature Spaces for Isolated Word Recognition
PublikacjaMuch attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...
-
Exploring the influence of personal factors on physiological responses to mental imagery in sport
PublikacjaImagery is a well-known technique in mental training which improves performance efficiency and influences physiological arousal. One of the biomarkers indicating the amount of physiological arousal is skin conductance level (SCL). The aim of our study is to understand how individual differences in personality (e.g. neuroticism), general imagery and situational sport anxiety are linked to arousal measuring with SCL in situational...
-
How Can We Identify Electrophysiological iEEG Activities Associated with Cognitive Functions?
PublikacjaElectrophysiological activities of the brain are engaged in its various functions and give rise to a wide spectrum of low and high frequency oscillations in the intracranial EEG (iEEG) signals, commonly known as the brain waves. The iEEG spectral activities are distributed across networks of cortical and subcortical areas arranged into hierarchical processing streams. It remains a major challenge to identify these activities in...
-
Automatic Singing Voice Recognition EmployingNeural Networks and Rough Sets
PublikacjaCelem badań jest automatyczne rozpoznawanie głosów śpiewaczych w kategorii rodzaju i jakości technicznej śpiewu. W artykule opisano stworzoną bazę danych głosów, która zawiera próbki głosu śpiewaków profesjonalnych i amatorskich. W dalszej części opisano parametry zdefiniowane w oparciu o zjawiska biomechaniczne w narządzie głosu podczas śpiewania. W oparciu o stworzone macierze parametrów wytrenowano i porównano automatyczne klasyfikatory...
-
Machine learning applied to acoustic-based road traffic monitoring
PublikacjaThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Expert system against machine learning approaches as a virtual sensor for ventricular arrhythmia risk level estimation
PublikacjaRecent advancements in machine learning have opened new avenues for preventing fatal ventricular arrhythmia by accurately measuring and analyzing QT intervals. This paper presents virtual sensor based on an expert system designed to prevent the risk of fatal ventricular arrhythmias associated with QT-prolonging treatments. The expert system categorizes patients into three risk levels based on their electrocardiogram-derived QT...
-
Machine learning applied to acoustic-based road traffic monitoring
PublikacjaThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Potencjał kognitywno-kulturowy dzielnicy a innowacyjne strategie rehabilitacji w kontekście społecznej indywidualizacji. Studium przypadku: Mouraria, Lizbona = Innovative Public Space Rehabilitation Models to Create Cognitive-Cultural Urban Economy in the Age of Mass Individualisation. Case of Mouraria, Lisbon
PublikacjaInnovative Public Space Rehabilitation Models to Create Cognitive- -Cultural Urban Economy in the Age of Mass Individualisation. Case of Mouraria, Lisbon. This paper deals with the issue of sustainable urban rehabilitation interventions in city cores focused on value creation through culture-led development as a tool for building a cognitive city. The objective is to analyze cases of rehabilitation of public space by culture-led...
-
A hybrid-mesh solution for coverage issues in WiMAX metropolitan area networks.
PublikacjaThe new WiMAX technology offers several advantages over the currently available (GSM or UMTS-based) solutions. It is a cost effective, evolving, and robust technology providing quality of service guarantees, high reliability, wide coverage and non-line-of-sight (NLOS) transmission capabilities. All these features make it particularly suitable for densely populated urban environments. In this paper we discuss the design and implementation...
-
TRANSPORT POSSIBILITY FOR MPEG-4/AVC- AND MPEG-2-ENCODED VIDEO DATA IN IPTV: A COMPARISON STUDY
PublikacjaIPTV (Television over IP) is a modern service with a great potential to expand. It uses the IP transport platform, that is already in worldwide operation. At the time of writing, two techniques are used to transport the video and audio data of IPTV: MPEG-2 TS and Native RTP. The two techniques quite definitely have an influence on both quality of service (QoS) and quality of experience (QoE). This paper sets out to demonstrate...
-
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublikacjaThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Systematic Literature Review for Emotion Recognition from EEG Signals
PublikacjaResearchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...
-
Electronic nose algorithm design using classical system identification for odour intensity detection
PublikacjaThe two elements considered crucial for constructing an efficient environmental odour intensity monitoring systems are sensors and algorithms typically addressed to as electronic nose sensor (e-nose). Due to operational complexity of biochemical sensors developed in human bodies algorithms based on computational methods of artificial intelligence are typically considered superior to classical model based approaches in development...
-
Systematic Literature Review for Emotion Recognition from EEG Signals
PublikacjaResearchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...
-
Online sound restoration system for digital library applications.
PublikacjaAudio signal processing algorithms were introduced to the new online non-commercial service for audio restoration intended to enhance the content of digitized audio repositories. Missing or distorted audio samples are predicted using neural networks and a specific implementation of the Jannsen interpolation method based on the autoregressive model (AR) combined with the iterative restoring of missing signal samples. Since the distortion...
-
Artificial Intelligence Aided Architectural Design
PublikacjaTools and methods used by architects always had an impact on the way building were designed. With the change in design methods and new approaches towards creation process, they became more than ever before crucial elements of the creation process. The automation of architects work has started with computational functions that were introduced to traditional computer-aided design tools. Nowadays architects tend to use specified tools...
-
A Case Study of Electric Vehicles Load Forecasting in Residential Sector Using Machine Learning Techniques
PublikacjaElectric vehicles (EVs) have been widely adopted to prevent global warming in recent years. The higher installation of Level-1 and Level-2 chargers in residential areas soon poses challenges to the distributed network. However, such challenges can be mitigated through the adoption of smart charging or controlled charging schemes. To facilitate the implementation of smart charging, accurate forecasting of EV charging demand in residential...
-
Investigating the Effects of Ground-Transmitted Vibrations from Vehicles on Buildings and Their Occupants, with an Idea for Applying Machine Learning
PublikacjaVibrations observed as a result of moving vehicles can potentially affect both buildings and the people inside them. The impacts of these vibrations are complex, affected by a number of parameters, like amplitude, frequency, and duration, as well as by the properties of the soil beneath. These factors together lead to various effects, from slight disruptions to significant structural damage. Occupants inside affected buildings...
-
Bibliometric analysis of artificial intelligence in wastewater treatment: Current status, research progress, and future prospects
PublikacjaWastewater treatment is an important topic for improving water quality and environmental protection, and artificial intelligence has become a powerful tool for wastewater treatment. This work provides research progress and a literature review of artificial intelligence applied to wastewater treatment based on the visualization of bibliometric tools. A total of 3460 publications from 2000 to 2023 were obtained from the Web of Science...
-
Detecting Lombard Speech Using Deep Learning Approach
PublikacjaRobust Lombard speech-in-noise detecting is challenging. This study proposes a strategy to detect Lombard speech using a machine learning approach for applications such as public address systems that work in near real time. The paper starts with the background concerning the Lombard effect. Then, assumptions of the work performed for Lombard speech detection are outlined. The framework proposed combines convolutional neural networks...
-
TDOA versus ATDOA for wide area multilateration system
PublikacjaThis paper outlines a new method of a location service (LCS) in the asynchronous wireless networks (AWNs) where the nodes (base stations) operate asynchronously in relation to one another. This method, called asynchronous time difference of arrival (ATDOA), enables the calculation of the position of the mobile object (MO) through the measurements taken by a set of non-synchronized fixed nodes and is based on the measurement of...
-
Evaluation of a company’s image on social media using the Net Sentiment Rate
PublikacjaVast amounts of new types of data are constantly being created as a result of dynamic digitization in all areas of our lives. One of the most important and valuable categories for business is data from social networks such as Facebook. Feedback resulting from the sharing of thoughts and emotions, expressed in comments on various products and services, is becoming the key factor on which modern business is based. This feedback is...
-
Orken Mamyrbayev Professor
Osoby1. Education: Higher. In 2001, graduated from the Abay Almaty State University (now Abay Kazakh National Pedagogical University), in the specialty: Computer science and computerization manager. 2. Academic degree: Ph.D. in the specialty "6D070300-Information systems". The dissertation was defended in 2014 on the topic: "Kazakh soileulerin tanudyn kupmodaldy zhuyesin kuru". Under my supervision, 16 masters, 1 dissertation...
-
Exergy and Energy Analyses of Microwave Dryer for Cantaloupe Slice and Prediction of Thermodynamic Parameters Using ANN and ANFIS Algorithms
PublikacjaThe study targeted towards drying of cantaloupe slices with various thicknesses in a microwave dryer. The experiments were carried out at three microwave powers of 180, 360, and 540 W and three thicknesses of 2, 4, and 6 mm for cantaloupe drying, and the weight variations were determined. Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) were exploited to investigate energy and exergy indices of...
-
Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach
PublikacjaTreatment of municipal wastewater to meet the stringent effluent quality standards is an energy-intensive process and the main contributor to the costs of wastewater treatment plants (WWTPs). Analysis and prediction of energy consumption (EC) are essential in designing and operating sustainable energy-saving WWTPs. In this study, the effect of wastewater, hydraulic, and climate-based parameters on the daily consumption of EC by...
-
Comparative study on the effectiveness of various types of road traffic intensity detectors
PublikacjaVehicle detection and speed measurements are crucial tasks in traffic monitoring systems. In this work, we focus on several types of electronic sensors, operating on different physical principles in order to compare their effectiveness in real traffic conditions. Commercial solutions are based on road tubes, microwave sensors, LiDARs, and video cameras. Distributed traffic monitoring systems require a high number of monitoring...
-
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublikacjaA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
Pedestrian detection in low-resolution thermal images
PublikacjaOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...