Filtry
wszystkich: 2474
-
Katalog
- Publikacje 2002 wyników po odfiltrowaniu
- Czasopisma 107 wyników po odfiltrowaniu
- Konferencje 103 wyników po odfiltrowaniu
- Wydawnictwa 1 wyników po odfiltrowaniu
- Osoby 61 wyników po odfiltrowaniu
- Projekty 6 wyników po odfiltrowaniu
- Kursy Online 20 wyników po odfiltrowaniu
- Wydarzenia 3 wyników po odfiltrowaniu
- Dane Badawcze 171 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: NETWORK
-
Evaluation of IEEE 802.21 Handover between IEEE 802.11 and UMTS Networks
PublikacjaThe paper presents IEEE 802.21 - the ongoing standard for network handovers - illustrating its functional features, and considering and simulating a set of scenarios of mobile stations moving between IEEE 802.11 and UMTS networks. In order to evaluate the performance of IEEE 802.21 hanover packet loses and switching delays caused by hanover procedures are investigated. The authors discuss example results of simulation experiments...
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublikacjaIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
Efficient uncertainty quantification using sequential sampling-based neural networks
PublikacjaUncertainty quantification (UQ) of an engineered system involves the identification of uncertainties, modeling of the uncertainties, and the forward propagation of the uncertainties through a system analysis model. In this work, a novel surrogate-based forward propagation algorithm for UQ is proposed. The proposed algorithm is a new and unique extension of the recent efficient global optimization using neural network (NN)-based...
-
Constrained aerodynamic shape optimization using neural networks and sequential sampling
PublikacjaAerodynamic shape optimization (ASO) involves computational fluid dynamics (CFD)-based search for an optimal aerodynamic shape such as airfoils and wings. Gradient-based optimization (GBO) with adjoints can be used efficiently to solve ASO problems with many design variables, but problems with many constraints can still be challenging. The recently created efficient global optimization algorithm with neural network (NN)-based prediction...
-
Mitigating Traffic Remapping Attacks in Autonomous Multi-hop Wireless Networks
PublikacjaMultihop wireless networks with autonomous nodes are susceptible to selfish traffic remapping attacks (TRAs). Nodes launching TRAs leverage the underlying channel access function to receive an unduly high Quality of Service (QoS) for packet flows traversing source-to-destination routes. TRAs are easy to execute, impossible to prevent, difficult to detect, and harmful to the QoS of honest nodes. Recognizing the need for providing...
-
Applying artificial neural networks for modelling ship speed and fuel consumption
PublikacjaThis paper deals with modelling ship speed and fuel consumption using artificial neural network (ANN) techniques. These tools allowed us to develop ANN models that can be used for predicting both the fuel consumption and the travel time to the destination for commanded outputs (the ship driveline shaft speed and the propeller pitch) selected by the ship operator. In these cases, due to variable environmental conditions, making...
-
Bees Detection on Images: Study of Different Color Models for Neural Networks
PublikacjaThis paper presents an approach to bee detection in video streams using a neural network classifier. We describe the motivation for our research and the methodology of data acquisition. The main contribution to this work is a comparison of different color models used as an input format for a feedforward convolutional architecture applied to bee detection. The detection process has is based on a neural binary classifier that classifies...
-
Spectrum Sensing Based on Hybrid Spectrum Handoff in Cognitive Radio Networks
PublikacjaThe rapid advancement of wireless communication combined with insufficient spectrum exploitation opens the door for the expansion of novel wireless services. Cognitive radio network (CRN) technology makes it possible to periodically access the open spectrum bands, which in turn improves the effectiveness of CRNs. Spectrum sensing (SS), which allows unauthorized users to locate open spectrum bands, plays a fundamental part in CRNs....
-
A new approach to design of weather disruption-tolerant wireless mesh networks
PublikacjaWireless Mesh Networks, offering transmission rates of 1–10 Gb/s per a millimeter-wave link (utilizing the 71–86 GHz band) seem to be a promising alternative to fiber optic backbone metropolitan area networks because of significantly lower costs of deployment and maintenance. However, despite providing high transmission rates in good weather conditions, high-frequency wireless links are very susceptible to weather disruptions....
-
Theoretical modelling of efficient fire safety water networks by certified domination
PublikacjaThis paper explores a new way of designing water supply networks for fire safety using ideas from graph theory, focusing on a method called certified domination. Ensuring a good water supply is crucial for fire safety in communities, this study looks at the rules and problems in Poland for how much water is needed to fight fires in different areas and how this can be achieved at a lowest possible cost. We present a way to plan...
-
The reliability of any-hop star networks with respect to failures of communication nodes.
PublikacjaThis paper investigated the reliability of any-hop star networks. The any-hop star topology is used in centralized computer networks. We will assume that the all nodes fail independently, links are failure-free. Following measures of network reliability are assumed: the expected number of nodes, which can communicate with the central node; the expected number of node pairs, which are connected by a path through the central node;...
-
Robust estimation of deformation from observation differences for free control networks
PublikacjaDeformation measurements have a repeatable nature. This means that deformation measurements are performed often with the same equipment, methods, geometric conditions and in a similar environment in epochs 1 and 2 (e.g., a fully automated, continuous control measurements). It is, therefore, reasonable to assume that the results of deformation measurements can be distorted by both random errors and by some non-random errors, which...
-
Recognition of Emotions in Speech Using Convolutional Neural Networks on Different Datasets
PublikacjaArtificial Neural Network (ANN) models, specifically Convolutional Neural Networks (CNN), were applied to extract emotions based on spectrograms and mel-spectrograms. This study uses spectrograms and mel-spectrograms to investigate which feature extraction method better represents emotions and how big the differences in efficiency are in this context. The conducted studies demonstrated that mel-spectrograms are a better-suited...
-
IEEE Transactions on Neural Networks and Learning Systems
Czasopisma -
International Journal of Communication Networks and Distributed Systems
Czasopisma -
International Journal of Communication Networks and Information Security
Czasopisma -
Optical Memory and Neural Networks (Information Optics)
Czasopisma -
International Conference on Embedded Wireless Systems and Networks
Czasopisma -
Mobility Managment Scenarios for IPv6 Networks-Proxy Mobile IP-v6Implementation Issues
PublikacjaManagement of user at the network layer plays an important role in efficient network operation. In the paper, authors' implementation of one of network-based mobility management models, namely Proxy Mobile IPv6, is presented and tested in a number of networking topologies and communication scenarios. The proposed implementation covers PMPIv6 functionality with optional security extensions (use of Diameter protocol) and handover...
-
A Novel Iterative Decoding for Iterated Codes Using Classical and Convolutional Neural Networks
PublikacjaForward error correction is crucial for communication, enabling error rate or required SNR reduction. Longer codes improve correction ratio. Iterated codes offer a solution for constructing long codeswith a simple coder and decoder. However, a basic iterative code decoder cannot fully exploit the code’s potential, as some error patterns within its correction capacity remain uncorrected.We propose two neural network-assisted decoders:...
-
Assessing the time effectiveness of trust management in fully synchronised wireless sensor networks
PublikacjaThe paper presents the results of the time effectiveness assessment of the distributed WSN Cooperative Trust Management Method - WCT2M in a fully synchronized Wireless Sensor Network (WSN). First we introduce some basic types of synchronization patterns in WSN based on the idea of sleep scheduling. Then we explain how WCT2M works in the network applying the fully synchronized sleep scheduling pattern. Such networks were subjected...
-
Improving voltage levels in low-voltage networks with distributed generation – case study
PublikacjaThe use of distributed generation in low-voltage networks may cause the voltage variation in them, within the wide range. In unfavourable circumstances, the voltage may reach unacceptable values. The paper presents the effect of distributed generation on voltage levels in a selected low-voltage rural distribution network in Poland. An analysis of possible methods for improving voltage levels in this network is conducted. The most...
-
Voltage and Current Unbalance Reduction in Power Networks with Distributed Generation and Electric Vehicles
PublikacjaThe current development of prosumer microsources and the expected spread of electric vehicles may cause the appearance of significant current and voltage unbalance in low-voltage (LV) networks. This unbalance, which is an unfavorable phenomenon, may occur when using single-phase photovoltaic (PV) microsources and single-phase home chargers for electric vehicles. This paper presents a proposal for the symmetrization of the LV network...
-
Supply current signal and artificial neural networks in the induction motor bearings diagnostics
PublikacjaThis paper contains research results of the diagnostics of induction motor bearings based on measurement of the supply current with usage of artificial neural networks. Bearing failure amount is greater than 40% of all engine failures, which makes their damage-free operation crucial. Tests were performed on motors with intentionally made bearings defects. Chapter 2 introduces the concept of artificial neural networks. It presents...
-
Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks
PublikacjaThe presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods....
-
Design of Cost-Efficient Optical Fronthaul for 5G/6G Networks: An Optimization Perspective
PublikacjaCurrently, 5G and the forthcoming 6G mobile communication systems are the most promising cellular generations expected to beat the growing hunger for bandwidth and enable the fully connected world presented by the Internet of Everything (IoE). The cloud radio access network (CRAN) has been proposed as a promising architecture for meeting the needs and goals of 5G/6G (5G and beyond) networks. Nevertheless, the provisioning of cost-efficient...
-
A bound on the number of middle-stage crossbars in f-cast rearrangeable Clos networks
PublikacjaIn 2006 Chen and Hwang gave a necessary and sufficient condition under which a three-stage Clos network is rearrangeable for broadcast connections. Assuming that only crossbars of the first stage have no fan-out property, we give similar conditions for f-cast Clos networks, where f is an arbitrary but fixed invariant of the network. Such assumptions are valid for some practical switching systems, e.g. high-speed crossconnects....
-
Spatio-temporal filtering for determination of common mode error in regional GNSS networks
PublikacjaThe spatial correlation between different stations for individual components in the regional GNSS networks seems to be significant. The mismodelling in satellite orbits, the Earth orientation parameters (EOP), largescale atmospheric effects or satellite antenna phase centre corrections can all cause the regionally correlated errors. This kind of GPS time series errors are referred to as common mode errors (CMEs). They are usually...
-
Electrical and noise responses of carbon nanotube networks enhanced by UV light for nitrogen dioxide sensing
Dane BadawczeNetworks consisting of randomly oriented carbon nanotubes (CNN) were investigated toward nitrogen dioxide detection by means of electrical and low-frequency noise measurements. UV-activation of CNN layers improved gas sensitivity and reduced the limit of detection, especially by employing 275 nm-LED. This data set includes DC resistance measurements...
-
System for monitoring road slippery based on CCTV cameras and convolutional neural networks
PublikacjaThe slipperiness of the surface is essential for road safety. The growing number of CCTV cameras opens the possibility of using them to automatically detect the slippery surface and inform road users about it. This paper presents a system of developed intelligent road signs, including a detector based on convolutional neural networks (CNNs) and the transferlearning method employed to the processing of images acquired with video...
-
A survey of strategies for communication networks to protect against large-scale natural disasters
PublikacjaRecent natural disasters have revealed that emergency networks presently cannot disseminate the necessary disaster information, making it difficult to deploy and coordinate relief operations. These disasters have reinforced the knowledge that telecommunication networks constitute a critical infrastructure of our society, and the urgency in establishing protection mechanisms against disaster-based disruptions. Hence, it is important...
-
Power Consumption Optimization in 5G/6G mmWave Networks with User Multi-Connectivity
PublikacjaIn the fifth generation (5G) and the upcoming sixth generation (6G) millimeter wave (mmWave) networks, the recent emerging ultra-reliable low-latency (URLLC) applications such as telemedicine and self-driven vehicles require strict availability and reliability requirements. Using user multi-connectivity (i.e., connecting each user to multiple base stations (BSs) simultaneously) has emerged as an efficient solution for providing...
-
An Off-Body Channel Model for Body Area Networks in Indoor Environments
PublikacjaThis paper presents an off-body channel model for body area networks (BANs) in indoor environments. The proposed model, which is based on both simulations and measurements in a realistic environment, consists of three components: mean path loss, body shadowing, and multipath fading. Seven scenarios in a realistic indoor office environment containing typical scatterers have been measured: five were static (three standing and two...
-
A Novel Bitrate Adaptation Method for Heterogeneous Wireless Body Area Networks
PublikacjaIn the article, a novel bitrate adaptation method for data streams allocation in heterogeneous Wireless Body Area Networks (WBANs) is presented. The efficiency of the proposed algorithm was compared with other known algorithms of data stream allocation using computer simulation. A dedicated simulator has been developed using results of measurements in the real environment. The usage of the proposed adaptive data streams allocation...
-
Extended Hopfield models of neural networks for combinatorial multiobjective optimization problems
Publikacja -
3rd International Workshop on Reliable Networks Design and Modeling (RNDM 2011)
Publikacjaartykuł sprawozdawczy z konferencji
-
Enhancing Performance of Switched Parasitic Antenna for Localization in Wireless Sensor Networks
PublikacjaThis paper presents an Electronically Steerable Parasitic Array Radiator (ESPAR) antenna with enhanced performance of estimating the incoming signal direction. Designed antenna is dedicated for 2.4 GHz ISM applications with emphasis on Wireless Sensor Networks (WSN). The limitations of the existing design approach are illustrated, as well as perspectives and challenges of the proposed solution in relation to the localization in...
-
Self-healing ATM networks based on preplanned restoration of virtual paths
PublikacjaW pracy omówiono klasyfikację metod odtwarzania usług w samonaprawialnych sieciach ATM opartych na ścieżkach wirtualnych i o topologii kratkowej. Przedstawiono model z zaplanowanymi z góry ścieżkami zabezpieczającymi i wyniki badań przykładowej sieci w Polsce.
-
The concept of application of artificial neural networks for cultivation controlof cartilages in bioreactors.
PublikacjaNowym elementem niniejszej pracy jest omówienie problemów związanych z możliwością sterowania parametrami hydrodynamicznymi hodowanej w bioreaktorze chrząstki stawowej przy wykorzystaniu sztucznych sieci neuronowych. Przedstawiona została architektura strategii sterowania hodowlą tkanki z zastosowaniem tych sieci.
-
Musical phrase representation and recognition by means of neural networks and rough sets.
PublikacjaW artykule przedstawiono podstawowe definicje dotyczące frazy muzycznej. W eksperymentach posłużono się zapisem parametrycznym. W celu wzmocnienia procesu rozpoznawania wykorzystano kodowanie entropijne muzyki. W eksperymentach klasyfikacji oparto się o sztuczne sieci neuronowe i metodę zbiorów przybliżonych. Słowa kluczowe: fraza muzyczna, klasyfikacja, sztuczne sieci neuronowe, metoda zbiorów przybliżonych
-
Processing of musical data employing rough sets and artificial neural networks
PublikacjaArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
Comparison of effectiveness of musical sound separation algorithms employing neural networks.
PublikacjaNiniejszy referat przedstawia kilka algorytmów służących do separacji dźwięków instrumentów muzycznych. Zaproponowane podejście do dekompozycji miksów dźwiękowych opiera się na założeniu, że wysokość dźwięków w miksie jest znana, tzn. wejściem dla algorytmów jest przebieg zmian wysokości dźwięków składowych miksu. Proces estymacji fazy i amplitudy składowych harmonicznych wykorzystuje dopasowywanie zespolonych przebiegów harmonicznych...
-
Distinguishable topological properties of functional genome networks in HIV-1 reservoirs
Publikacja -
Effect of ultraviolet light on 1/f noise in carbon nanotube networks
Publikacja -
Designing RBF Networks Using the Agent-Based Population Learning Algorithm
Publikacja -
Cluster-dependent rotation-based feature selection for the RBF networks initialization
Publikacja -
Adjusted SpikeProp algorithm for recurrent spiking neural networks with LIF neurons
PublikacjaA problem related to the development of a supervised learning method for recurrent spiking neural networks is addressed in the paper. The widely used Leaky-Integrate-and-Fire model has been adopted as a spike neuron model. The proposed method is based on a known SpikeProp algorithm. In detail, the developed method enables gradient descent learning of recurrent or multi-layer feedforward spiking neural networks. The research included...
-
THE REPRESENTATION PROBLEM FOR A DIFFUSION EQUATION AND FRACTAL R-L LADDER NETWORKS
PublikacjaThe representation problem is to prove that a discretization in space of the Fourier transform of a diffusion equation with a constant diffusion coefficient can be realized explicitly by an infinite fractal R-L ladder networks. We prove a rigidity theorem: a solution to the representation problem exists if and only if the space discretization is a geometric space scale and the fractal ladder networks is a Oustaloup one. In this...
-
Artificial Neural Networks in Forecasting the Consumer Bankruptcy Risk with Innovative Ratios
PublikacjaThis study aims to develop nine different consumer bankruptcy forecasting models with the help of three types of artificial neural networks and to verify the usefulness of new, innovative ratios for implementation in personal finance. A learning sample comprising 200 consumers, and a testing sample of 500 non-bankrupt and 500 bankrupt consumers from Poland are used. The author employed three research approaches to using the entry...
-
Use of Neural Networks in Diagnostics of Rolling-Element Bearing of the Induction Motor
Publikacja