Filtry
wszystkich: 61
Wyniki wyszukiwania dla: CNN ROBUSTNESS DETECTION UNCERTAINTY
-
An Analysis of Uncertainty and Robustness of Waterjet Machine Positioning Vision System
PublikacjaThe paper presents a new Automatic Waterjet Positioning Vision System (AWPVS) and investigates components of workpiece positioning accuracy. The main purpose of AWPVS is to precisely identify the position and rotation of a workpiece placed on a waterjet machine table. Two webcams form a basis for the system, and constitute its characteristics. The proposed algorithm comprises various image processing techniques to assure a required...
-
Robust Object Detection with Multi-input Multi-output Faster R-CNN
PublikacjaRecent years have seen impressive progress in visual recognition on many benchmarks, however, generalization to the out-of-distribution setting remains a significant challenge. A state-of-the-art method for robust visual recognition is model ensembling. However, recently it was shown that similarly competitive results could be achieved with a much smaller cost, by using multi-input multi-output architecture (MIMO). In this work,...
-
Robust Object Detection with Multi-input Multi-output Faster R-CNN
PublikacjaRecent years have seen impressive progress in visual recognition on many benchmarks, however, generalization to the out-of-distribution setting remains a significant challenge. A state-of-the-art method for robust visual recognition is model ensembling. However, recently it was shown that similarly competitive results could be achieved with a much smaller cost, by using multi-input multi-output architecture (MIMO). In this work,...
-
Toward Robust Pedestrian Detection With Data Augmentation
PublikacjaIn this article, the problem of creating a safe pedestrian detection model that can operate in the real world is tackled. While recent advances have led to significantly improved detection accuracy on various benchmarks, existing deep learning models are vulnerable to invisible to the human eye changes in the input image which raises concerns about its safety. A popular and simple technique for improving robustness is using data...
-
Robust Model Predictive Control for Autonomous Underwater Vehicle – Manipulator System with Fuzzy Compensator
PublikacjaThis paper proposes an improved Model Predictive Control (MPC) approach including a fuzzy compensator in order to track desired trajectories of autonomous Underwater Vehicle Manipulator Systems (UVMS). The tracking performance can be affected by robot dynamical model uncertainties and applied external disturbances. Nevertheless, the MPC as a known proficient nonlinear control approach should be improved by the uncertainty estimator...
-
Robust Model Predictive Control for Autonomous Underwater Vehicle–Manipulator System with Fuzzy Compensator
PublikacjaThis paper proposes an improved Model Predictive Control (MPC) approach including a fuzzy compensator in order totrack desired trajectories of autonomous Underwater Vehicle Manipulator Systems (UVMS). The tracking performancecan be affected by robot dynamical model uncertainties and applied external disturbances. Nevertheless, the MPCas a known proficient nonlinear control approach should be improved by the...
-
Semantic segmentation training using imperfect annotations and loss masking
PublikacjaOne of the most significant factors affecting supervised neural network training is the precision of the annotations. Also, in a case of expert group, the problem of inconsistent data annotations is an integral part of real-world supervised learning processes, well-known to researchers. One practical example is a weak ground truth delineation for medical image segmentation. In this paper, we have developed a new method of accurate...
-
Robust and Efficient Machine Learning Algorithms for Visual Recognition
PublikacjaIn visual recognition, the task is to identify and localize all objects of interest in the input image. With the ubiquitous presence of visual data in modern days, the role of object recognition algorithms is becoming more significant than ever and ranges from autonomous driving to computer-aided diagnosis in medicine. Current models for visual recognition are dominated by models based on Convolutional Neural Networks (CNNs), which...
-
An interval estimator for chlorine monitoring in drinking water distribution systems under uncertain system dynamics, inputs and chlorine concentration measurement errors
PublikacjaThe design of an interval observer for estimation of unmeasured state variables with application to drinking water distribution systems is described. In particular, the design process of such an observer is considered for estimation of the water quality described by the concentration of free chlorine. The interval observer is derived to produce the robust interval bounds on the estimated water quality state variables. The stability...
-
Closer Look at the Uncertainty Estimation in Semantic Segmentation under Distributional Shift
PublikacjaWhile recent computer vision algorithms achieve impressive performance on many benchmarks, they lack robustness - presented with an image from a different distribution, (e.g. weather or lighting conditions not considered during training), they may produce an erroneous prediction. Therefore, it is desired that such a model will be able to reliably predict its confidence measure. In this work, uncertainty estimation for the task...
-
Robustness in Compressed Neural Networks for Object Detection
PublikacjaModel compression techniques allow to significantly reduce the computational cost associated with data processing by deep neural networks with only a minor decrease in average accuracy. Simultaneously, reducing the model size may have a large effect on noisy cases or objects belonging to less frequent classes. It is a crucial problem from the perspective of the models' safety, especially for object detection in the autonomous driving...
-
A robust sliding mode observer for non-linear uncertain biochemical systems
PublikacjaA problem of state estimation for a certain class of non-linear uncertain systems has been addressed in this paper. In particular, a sliding mode observer has been derived to produce robust and stable estimates of the state variables. The stability and robustness of the proposed sliding mode observer have been investigated under parametric and unstructured uncertainty in the system dynamics. In order to ensure an unambiguous non-linear...
-
Multi-Criterial Design of Antennas with Tolerance Analysis Using Response-Feature Predictors
PublikacjaImperfect manufacturing is one of the factors affecting the performance of antenna systems. It is particularly important when design specifications are strict and leave a minimum leeway for a degradation caused by geometry or material parameter deviations from their nominal values. At the same time, conventional antenna design procedures routinely neglect to take the fabrication tolerances into account, which is mainly a result...
-
Hybrid SONIC: joint feedforward–feedback narrowband interference canceler
PublikacjaSONIC (self-optimizing narrowband interference canceler) is an acronym of a recently proposed active noise control algorithm with interesting adaptivity and robustness properties. SONIC is a purely feedback controller, capable of rejecting nonstationary sinusoidal disturbances (with time-varying amplitude and/or frequency) in the presence of plant (secondary path) uncertainty. We show that although SONIC can work reliably without...
-
Mispronunciation Detection in Non-Native (L2) English with Uncertainty Modeling
PublikacjaA common approach to the automatic detection of mispronunciation in language learning is to recognize the phonemes produced by a student and compare it to the expected pronunciation of a native speaker. This approach makes two simplifying assumptions: a) phonemes can be recognized from speech with high accuracy, b) there is a single correct way for a sentence to be pronounced. These assumptions do not always hold, which can result...
-
Interval estimator for chlorine monitoring in drinking water distribution systems under uncertain system dynamics, inputs and state measurement errors
PublikacjaThe design of interval observer for estimation of unmeasured state variables for application to drinking water distribution systems is described in this paper. In particular, it considers the design of such observer for estimation of water quality described by free chlorine concentration. An interval observer is derived to produce robust interval bounds on the estimated water quality state variables. The stability and robustness...
-
Tolerance Optimization of Antenna Structures by Means of Response Feature Surrogates
PublikacjaFabrication tolerances and other types of uncertainties, e.g., the lack of precise knowledge of material parameters, have detrimental effects on electrical and field performance of antenna systems. In the case of input characteristics these are particularly noticeable for narrow- and multi-band antennas where deviations of geometry parameters from their nominal values lead to frequency shifts of the operating frequency bands. Improving...
-
Computer-Aided Detection of Hypertensive Retinopathy Using Depth-Wise Separable CNN
PublikacjaHypertensive retinopathy (HR) is a retinal disorder, linked to high blood pressure. The incidence of HR-eye illness is directly related to the severity and duration of hypertension. It is critical to identify and analyze HR at an early stage to avoid blindness. There are presently only a few computer-aided systems (CADx) designed to recognize HR. Instead, those systems concentrated on collecting features from many retinopathy-related...
-
Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy
PublikacjaThe diabetic retinopathy is a disease caused by long-standing diabetes. Lack of effective treatment can lead to vision impairment and even irreversible blindness. The disease can be diagnosed by examining digital color fundus photographs of retina. In this paper we propose deep learning approach to automated diabetic retinopathy screening. Deep convolutional neural networks (CNN) - the most popular kind of deep learning algorithms...
-
Electrical and noise responses of carbon nanotube networks enhanced by UV light for nitrogen dioxide sensing
Dane BadawczeNetworks consisting of randomly oriented carbon nanotubes (CNN) were investigated toward nitrogen dioxide detection by means of electrical and low-frequency noise measurements. UV-activation of CNN layers improved gas sensitivity and reduced the limit of detection, especially by employing 275 nm-LED. This data set includes DC resistance measurements...
-
Vehicle detector training with minimal supervision
PublikacjaRecently many efficient object detectors based on convolutional neural networks (CNN) have been developed and they achieved impressive performance on many computer vision tasks. However, in order to achieve practical results, CNNs require really large annotated datasets for training. While many such databases are available, many of them can only be used for research purposes. Also some problems exist where such datasets are not...
-
Playback detection using machine learning with spectrogram features approach
PublikacjaThis paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...
-
Cascade Object Detection and Remote Sensing Object Detection Method Based on Trainable Activation Function
PublikacjaObject detection is an important process in surveillance system to locate objects and it is considered as major application in computer vision. The Convolution Neural Network (CNN) based models have been developed by many researchers for object detection to achieve higher performance. However, existing models have some limitations such as overfitting problem and lower efficiency in small object detection. Object detection in remote...
-
Vehicle detector training with labels derived from background subtraction algorithms in video surveillance
PublikacjaVehicle detection in video from a miniature station- ary closed-circuit television (CCTV) camera is discussed in the paper. The camera provides one of components of the intelligent road sign developed in the project concerning the traffic control with the use of autonomous devices being developed. Modern Convolutional Neural Network (CNN) based detectors need big data input, usually demanding their manual labeling. In the presented...
-
Style Transfer for Detecting Vehicles with Thermal Camera
PublikacjaIn this work we focus on nighttime vehicle detection for intelligent traffic monitoring from the thermal camera. To train a Convolutional Neural Network (CNN) detector we create a stylized version of COCO (Common Objects in Context) dataset using Style Transfer technique that imitates images obtained from thermal cameras. This new dataset is further used for fine-tuning of the model and as a result detection accuracy on images...
-
INVESTIGATION OF THE LOMBARD EFFECT BASED ON A MACHINE LEARNING APPROACH
PublikacjaThe Lombard effect is an involuntary increase in the speaker’s pitch, intensity, and duration in the presence of noise. It makes it possible to communicate in noisy environments more effectively. This study aims to investigate an efficient method for detecting the Lombard effect in uttered speech. The influence of interfering noise, room type, and the gender of the person on the detection process is examined. First, acoustic parameters...
-
Driver fatigue detection method based on facial image analysis
PublikacjaNowadays, ensuring road safety is a crucial issue that demands continuous development and measures to minimize the risk of accidents. This paper presents the development of a driver fatigue detection method based on the analysis of facial images. To monitor the driver's condition in real-time, a video camera was used. The method of detection is based on analyzing facial features related to the mouth area and eyes, such as...
-
Evaluating calibration and robustness of pedestrian detectors
PublikacjaIn this work robustness and calibration of modern pedestrian detectors are evaluated. Pedestrian detection is a crucial perception com- ponent in autonomous driving and here we study its performance under different image corruptions. Furthermore, we provide analysis of classifi- cation calibration of pedestrian detectors and we show a positive effect of using style-transfer augmentation technique. Our analysis is aimed as a step...
-
Classification of Covid-19 using Differential Evolution Chaotic Whale Optimization based Convolutional Neural Network
PublikacjaCOVID-19, also known as the Coronavirus disease-2019, is an transferrable disease that spreads rapidly, affecting countless individuals and leading to fatalities in this worldwide pandemic. The precise and swift detection of COVID-19 plays a crucial role in managing the pandemic's dissemination. Additionally, it is necessary to recognize COVID-19 quickly and accurately by investigating chest x-ray images. This paper proposed a...
-
Evaluation of aspiration problems in L2 English pronunciation employing machine learning
PublikacjaThe approach proposed in this study includes methods specifically dedicated to the detection of allophonic variation in English. This study aims to find an efficient method for automatic evaluation of aspiration in the case of Polish second-language (L2) English speakers’ pronunciation when whole words are analyzed instead of particular allophones extracted from words. Sample words including aspirated and unaspirated allophones...
-
Weighted Clustering for Bees Detection on Video Images
PublikacjaThis work describes a bee detection system to monitor bee colony conditions. The detection process on video images has been divided into 3 stages: determining the regions of interest (ROI) for a given frame, scanning the frame in ROI areas using the DNN-CNN classifier, in order to obtain a confidence of bee occurrence in each window in any position and any scale, and form one detection window from a cloud of windows provided by...
-
Ranking Speech Features for Their Usage in Singing Emotion Classification
PublikacjaThis paper aims to retrieve speech descriptors that may be useful for the classification of emotions in singing. For this purpose, Mel Frequency Cepstral Coefficients (MFCC) and selected Low-Level MPEG 7 descriptors were calculated based on the RAVDESS dataset. The database contains recordings of emotional speech and singing of professional actors presenting six different emotions. Employing the algorithm of Feature Selection based...
-
Performance of Watermarking-based DTD Algorithm Under Time-varying Echo Path Conditions
PublikacjaA novel double-talk detection (DTD) algorithm based on techniques similar to those used for audio signal watermarking was introduced by the authors. The application of the described DTD algorithm within acoustic echo cancellation system is presented. The problem of DTD robustness to time-varying conditions of acoustic echo path is discussed and explanation as to why such conditions occur in practical situations is provided. The...
-
Robustness analysis of watermarking-based dtd algorithm under time-variable echo conditions
PublikacjaA novel double-talk detection (DTD) algorithm based on techniques similar to those used for audio signal watermarking was introduced by the authors. The application of the described DTD algorithm within acoustic echo cancellation system is presented. The problem of DTD robustness to time-varying conditions of acoustic echo path is discussed and explanation as to why such conditions occur in practical situations is provided. The...
-
Detection, classification and localization of acoustic events in the presence of background noise for acoustic surveillance of hazardous situations
PublikacjaEvaluation of sound event detection, classification and localization of hazardous acoustic events in the presence of background noise of different types and changing intensities is presented. The methods for discerning between the events being in focus and the acoustic background are introduced. The classifier, based on a Support Vector Machine algorithm, is described. The set of features and samples used for the training of the...
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublikacjaIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
Thermal dewetting as a method of surface modification of the gold thin films for surface plasmon resonance based sensor applications
PublikacjaHere, we report a quick and simple approach with low, optimized production costs to obtain surface plasmon resonance (SPR) based sensors fabricated through a time- and resource-effective method based on thermal dewetting of thin Au films. From the applicative point of view, the method of detection presented here should be easier to implement, since light transmission measurements seem to be much less challenging than light refractive...
-
Optimized Deep Learning Model for Flood Detection Using Satellite Images
PublikacjaThe increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...
-
A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification
PublikacjaThe article concerns the automation of vessel movement anomaly detection for maritime and coastal traffic safety services. Deep Learning techniques, specifically Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the form of a grayscale image, were generated. 1458 convolutional neural networks with...
-
Pedestrian detection in low-resolution thermal images
PublikacjaOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...
-
Vehicle Detection with Self-Training for Adaptative Video Processing Embedded Platform
PublikacjaTraffic monitoring from closed-circuit television (CCTV) cameras on embedded systems is the subject of the performed experiments. Solving this problem encounters difficulties related to the hardware limitations, and possible camera placement in various positions which affects the system performance. To satisfy the hardware requirements, vehicle detection is performed using a lightweight Convolutional Neural Network (CNN), named...
-
The Influence of Global Corrosion Degradation on Localized Damage Detection Using Guided Waves
PublikacjaThis paper presents the results of a numerical analysis of the influence of corrosion degradation of metal plates on the wave propagation phenomenon. There are several different corrosion types, but general and pitting corrosion are the most common. General corrosion is more or less uniformly distributed over the entire exposed surface of the metal while pitting corrosion takes the form of localized cracks. Because the general...
-
A Novel Spatio–Temporal Deep Learning Vehicle Turns Detection Scheme Using GPS-Only Data
PublikacjaWhether the computer is driving your car or you are, advanced driver assistance systems (ADAS) come into play on all levels, from weather monitoring to safety. These modern-day ADASs use various assisting tools for drivers to keep the journey safe; these sophisticated tools provide early signals of numerous events, such as road conditions, emerging traffic scenarios, and weather warnings. Many urban applications, such as car-sharing...
-
Carbon nanowalls: A new versatile graphene based interface for laser desorption/ionization-mass spectrometry detection of small compounds in real samples.
PublikacjaCarbon nanowalls, vertically aligned graphene nanosheets, attract attention owing to their tunable band-gap, high conductivity, high mechanical robustness, high optical absorbance and other remarkable properties. In this paper, we report for the first time, the use of hydrophobic boron-doped carbon nanowalls (CNWs) for laser desorption/ionization of small compounds and their subsequent detection by mass spectrometry (LDI-MS). The...
-
Demonstrator testera wbudowanego BIST dla układów w pełni różnicowych
PublikacjaPrzedstawiono demonstrator testera wbudowanego, przeznaczony do pracy na stanowisku dydaktycznym w laboratorium z przedmiotu Zaawansowane Metody Pomiarowe i Diagnostyczne. Na stanowisku studenci zapoznają się z technologią BIST (ang. Built-In Self-Test), która jest przykładem wdrożenia strategii projektowania dla testowania.
-
A Simple Neural Network for Collision Detection of Collaborative Robots
PublikacjaDue to the epidemic threat, more and more companies decide to automate their production lines. Given the lack of adequate security or space, in most cases, such companies cannot use classic production robots. The solution to this problem is the use of collaborative robots (cobots). However, the required equipment (force sensors) or alternative methods of detecting a threat to humans are usually quite expensive. The article presents...
-
A fast time-frequency multi-window analysis using a tuning directional kernel
PublikacjaIn this paper, a novel approach for time-frequency analysis and detection, based on the chirplet transform and dedicated to non-stationary as well as multi-component signals, is presented. Its main purpose is the estimation of spectral energy, instantaneous frequency (IF), spectral delay (SD), and chirp rate (CR) with a high time-frequency resolution (separation ability) achieved by adaptive fitting of the transform kernel. We...
-
Quality control of cheese samples for the presence of natamycin preservative – A natural deep eutectic solvent (NADES) based extraction coupled with HPLC
PublikacjaA new protocol for the determination of natamycin – an antifungal agent used as a food preservative - in cheese samples – is described. This new method is based on a natural deep eutectic solvent (NADES) green extraction procedure. High-performance liquid chromatography (HPLC) was used for detection and quantification. NADESs with different molar ratios were evaluated for efficient and selective extraction. NADES made of thymol...
-
Adaptive dynamic control allocation for dynamic positioning of marine vessel based on backstepping method and sequential quadratic programming
PublikacjaIt is generally assumed in dynamic positioning of over-actuated marine vessels that the control effectiveness matrix (input matrix) is known and constant, or, in case of fault information, it is estimated by the fault detection and diagnosis system. The purpose of the study is to develop the adaptive dynamic positioning control system for an over-actuated marine vessel in the presence of uncertainties and with emphasis on limited...
-
Analysis
PublikacjaNew food products and diverse formulations containing the regulated steviol glycoside(s) as well as Stevia extracts or Stevia leaves have been brought on the global market. The upcoming multitude of such food products, but also their falsification and adulteration, does have impact on food analysis. Robust high-throughput methods that cope with different food matrices are required for food control to ensure food safety. The analysis...