Wyniki wyszukiwania dla: MULTICLASS ADABOOST CLASSIFIER
-
Multiclass AdaBoost Classifier Parameter Adaptation for Pattern Recognition
PublikacjaThe article presents the problem of parameter value selection of the multiclass ``one against all'' approach of an AdaBoost algorithm in tasks of object recognition based on two-dimensional graphical images. AdaBoost classifier with Haar features is still used in mobile devices due to the processing speed in contrast to other methods like deep learning or SVM but its main drawback is the need to assembly the results of binary...
-
Two Stage SVM and kNN Text Documents Classifier
PublikacjaThe paper presents an approach to the large scale text documents classification problem in parallel environments. A two stage classifier is proposed, based on a combination of k-nearest neighbors and support vector machines classification methods. The details of the classifier and the parallelisation of classification, learning and prediction phases are described. The classifier makes use of our method named one-vs-near. It is...
-
Improving Effectiveness of SVM Classifier for Large Scale Data
PublikacjaThe paper presents our approach to SVM implementation in parallel environment. We describe how classification learning and prediction phases were pararellised. We also propose a method for limiting the number of necessary computations during classifier construction. Our method, named one-vs-near, is an extension of typical one-vs-all approach that is used for binary classifiers to work with multiclass problems. We perform experiments...
-
Feature Reduction Using Similarity Measure in Object Detector Learning with Haar-like Features
PublikacjaThis paper presents two methods of training complexity reduction by additional selection of features to check in object detector training task by AdaBoost training algorithm. In the first method, the features with weak performance at first weak classifier building process are reduced based on a list of features sorted by minimum weighted error. In the second method the feature similarity measures are used to throw away that features...
-
Comparative Analysis of Text Representation Methods Using Classification
PublikacjaIn our work, we review and empirically evaluate five different raw methods of text representation that allow automatic processing of Wikipedia articles. The main contribution of the article—evaluation of approaches to text representation for machine learning tasks—indicates that the text representation is fundamental for achieving good categorization results. The analysis of the representation methods creates a baseline that cannot...
-
Playback detection using machine learning with spectrogram features approach
PublikacjaThis paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...
-
Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks
PublikacjaIn this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....
-
Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets
PublikacjaThis paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of...
-
Multiscaled Hybrid Features Generation for AdaBoost Object Detection
PublikacjaThis work presents the multiscaled version of modified census features in graphical objects detection with AdaBoost cascade training algorithm. Several experiments with face detector training process demonstrate better performance of such features over ordinal census and Haar-like approaches. The possibilities to join multiscaled census and Haar features in single hybrid cascade of strong classifiers are also elaborated and tested....
-
Feature type and size selection for adaboost face detection algorithm
PublikacjaThe article presents different sets of Haar-like features defined for adaptive boosting (AdaBoost) algorithm for face detection. Apart from a simple set of pixel intensity differences between horizontally or vertically neighboring rectangles, the features based on rotated rectangles are considered. Additional parameter that limits the area on which the features are calculated is also introduced. The experiments carried out on...
-
Klasyfikator Adaboost w detekcji i rozpoznawaniu obiektów graficznych
PublikacjaW pracy opisano metode Adaboost w zastosowaniu do detekcji obiektów graficznych, takich jak twarze lub rozpoznawania np. osób na podstawie obrazu twarzy. Przedstawiono podstawy algorytm, wersje kaskadowa, schemat przepływu danych i sterowania w zadaniu detekcji twarzy oraz sposoby adaptacji tej metody do problemów wieloklasowych. Opisano równiez zbiory cech obrazów, takie jak HAAR, LBP czy HOG stosowane w zadaniach detekcji i rozpoznawania...
-
How Specific Can We Be with k-NN Classifier?
PublikacjaThis paper discusses the possibility of designing a two stage classifier for large-scale hierarchical and multilabel text classification task, that will be a compromise between two common approaches to this task. First of it is called big-bang, where there is only one classifier that aims to do all the job at once. Top-down approach is the second popular option, in which at each node of categories’ hierarchy, there is a flat classifier...
-
Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification
PublikacjaLiquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community...
-
Identification of category associations using a multilabel classifier
PublikacjaDescription of the data using categories allows one to describe it on a higher abstraction level. In this way, we can operate on aggregated groups of the information, allowing one to see relationships that do not appear explicit when we analyze the individual objects separately. In this paper we present automatic identification of the associations between categories used for organization of the textual data. As experimental data...
-
Deep Learning-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data
PublikacjaThe field of cancer diagnostics has been revolutionized by liquid biopsies, which offer a bridge between laboratory research and clinical settings. These tests are less invasive than traditional biopsies and more convenient than routine imaging methods. Liquid biopsies allow studying of tumor-derived markers in bodily fluids, enabling the development of more precise cancer diagnostic tests for screening, disease monitoring, and...
-
SDF classifier revisited
PublikacjaArtykuł dotyczy problemów związanych z konstruowaniem klasyfikatorów wykorzystujących tzw. dyskryminacyjną funkcję samopodobieństwa (ang. Similarity Discriminant Function - SDF), w których tradycyjna, wektorowa reprezentacja obrazu została zastąpiona przez dane o strukturze macierzowej. Zaprezentowano możliwości modyfikowania macierzowych struktur danych i zaproponowano nowe warianty kryterium SDF. Przedstawione algorytmy zostały...
-
Weighted sequential classifier
PublikacjaZaproponowano wieloklasowe ważone kryterium Fishera i uzasadniono potrzebę jego wprowadzenia. Na bazie tego kryterium skonstruowano sekwencyjny algorytm uczenia klasyfikatora. Przedstawiono wyniki eksperymentów.
-
Automated Classifier Development Process for Recognizing Book Pages from Video Frames
PublikacjaOne of the latest developments made by publishing companies is introducing mixed and augmented reality to their printed media (e.g. to produce augmented books). An important computer vision problem that they are facing is classification of book pages from video frames. The problem is non-trivial, especially considering that typical training data is limited to only one digital original per book page, while the trained classifier...
-
New variants of the SDF classifier
PublikacjaPraca dotyczy problemów związanych z konstruowaniem klasyfikatorów, w których typowa wektorowa reprezentacja obrazu została zastapiona danymi o strukturze macierzowej. W pracy zaproponowano nowe algorytmy oparte na funkcji SDF. Zostały one przetestowane na obrazach przedstawiających cyfry pisane ręcznie oraz na zdjęciach twarzy. Przeprowadzone eksperymenty pozwalają stwierdzić, że wprowadzone modyfikacje istotnie zwiększyły skuteczność...
-
A compact smart sensor based on a neural classifier for objects modeled by Beaunier's model
PublikacjaA new solution of a smart microcontroller sensor based on a simple direct sensor-microcontroller interface for technical objects modeled by two-terminal networks and by the Beaunier’s model of anticorrosion coating is proposed. The tested object is stimulated by a square pulse and its time voltage response is sampled four times by the internal ADC of microcontroller. A neural classifier based on measurement data classifies the...
-
Identification of the Contamination Source Location in the Drinking Water Distribution System Based on the Neural Network Classifier
PublikacjaThe contamination ingression to the Water Distribution System (WDS) may have a major impact on the drinking water consumers health. In the case of the WDS contamination the data from the water quality sensors may be efficiently used for the appropriate disaster management. In this paper the methodology based on the Learning Vector Quantization (LVQ) neural network classifier for the identification of the contamination source location...
-
Ensemble Classifier for Mining Data Streams
Publikacja -
A method of self-testing of analog circuits based on fully differential op-amps with theTCBF classifier
PublikacjaA new approach of self-testing of analog circuits based on fully differential op-amps of mixed-signal systems controlled by microcontrollers is presented. It consists of a measurement procedure and a fault diagnosis procedure. We measure voltage samples of a time response of a tested circuit on a stimulation of a unit step function given at the common-mode reference voltage input of the op-amp. The fault detection and fault localization...
-
imPlatelet classifier: image‐converted RNA biomarker profiles enable blood‐based cancer diagnostics
PublikacjaLiquid biopsies offer a minimally invasive sample collection, outperforming traditional biopsies employed for cancer evaluation. The widely used material is blood, which is the source of tumor-educated platelets. Here, we developed the imPlatelet classifier, which converts RNA-sequenced platelet data into images in which each pixel corresponds to the expression level of a certain gene. Biological knowledge from the Kyoto Encyclopedia...
-
Pupil detection supported by Haar feature based cascade classifier for two-photon vision examinations
PublikacjaThe aim of this paper is to present a novel method, called Adaptive Edge Detection (AED), of extraction of precise pupil edge coordinates from eye image characterized by reflections of external illuminators and laser beams. The method is used for monitoring of pupil size and position during psychophysical tests of two-photon vision performed by dedicated optical set-up. Two-photon vision is a new phenomenon of perception of short-pulsed...
-
Deep Learning-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data
Publikacja -
Thresholding Strategies for Large Scale Multi-Label Text Classifier
PublikacjaThis article presents an overview of thresholding methods for labeling objects given a list of candidate classes’ scores. These methods are essential to multi-label classification tasks, especially when there are a lot of classes which are organized in a hierarchy. Presented techniques are evaluated using the state-of-the-art dedicated classifier on medium scale text corpora extracted from Wikipedia. Obtained results show that the...
-
Agent-Based RBF Network Classifier with Feature Selection in a Kernel Space
Publikacja -
From Linear Classifier to Convolutional Neural Network for Hand Pose Recognition
PublikacjaRecently gathered image datasets and the new capabilities of high-performance computing systems have allowed developing new artificial neural network models and training algorithms. Using the new machine learning models, computer vision tasks can be accomplished based on the raw values of image pixels instead of specific features. The principle of operation of deep neural networks resembles more and more what we believe to be happening...
-
Underground Water Level Prediction in Remote Sensing Images Using Improved Hydro Index Value with Ensemble Classifier
PublikacjaThe economic sustainability of aquifers across the world relies on accurate and rapid estimates of groundwater storage changes, but this becomes difficult due to the absence of insitu groundwater surveys in most areas. By closing the water balance, hydrologic remote sensing measures offer a possible method for quantifying changes in groundwater storage. However, it is uncertain to what extent remote sensing data can provide an...
-
Construction of a picewise-linear classifier by applaing discriminant analysis to decision tree induction
PublikacjaArtykuł prezentuje metodę konstrukcji drzew decyzyjnych. W odróżnieniu od większości popularnych algorytmów, które wybierają pojedyncze cechy do budowy reguł decyzyjnych w węzłach drzewa, ta metoda łączy wszystkie cechy. Używa ona wieloklasowego kryterium Fishera do wydzielenia nowych cech, które są liniowa kombinacją cech pierwotnych. Takie drzewa mogą aproksymować złożone regiony decyzyjne używając mniejszej liczby węzłów w porównaniu...
-
Analysis of the Possibility of Using New Types of Protective Coatings and Abrasion-Resistant Linings under the Operating Conditions of the Spiral Classifier at KGHM Polska Miedź S.A. Ore Concentration Plant
PublikacjaA study was carried out to select the appropriate coatings for corrosion protection of the spiral classifier working at KGHM Polska Miedź S.A. Ore Concentration Plant. The abrasion resistance of selected protective coatings and wear-resistant linings was investigated using a DT-523 rotary abrasion tester with Taber CS-10 rubber abrasive discs. The average weight loss of the coatings after a cycle of 2000 revolutions was determined....
-
Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier
PublikacjaIn recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia....
-
Ensemble Online Classifier Based on the One-Class Base Classifiers for Mining Data Streams
Publikacja -
Cathodic Protection System of the Spiral Classifier at the KGHM Polska Miedź S.A. Ore Concentration Plant—Case Study of Commissioning and Control of Operating Parameters
PublikacjaThe project involved designing, constructing and commissioning a cathodic protection system for a selected spiral classifier operating at the KGHM Polska Miedź S.A. Ore Concentration Plant (O/ZWR). The authors developed a concept and assumptions regarding the corrosion protection of a large industrial device using a cathodic protection system with an external power source. Pre-project studies included conducting a trial polarization...
-
Pupil detection supported by Haar feature based cascade classifier for two-photon vision examinations
Publikacja -
Comparison of ANN Classifier to the Neuro-Fuzzy System for Collusion Detection in the Tender Procedures of Road Construction Sector
Publikacja -
Michał Kowalewski dr inż.
OsobyResearch career: Doctoral dissertation "Tolerance robust, dictionary methods of fault diagnosis of electronic circuits with specialized neural classifier". Participation as a performer in four KBN research teams MNiSW and NCBiR concerning the development of diagnostic methods for analog electronic circuits and diagnostics of technical objects using impedance spectroscopy methods. 39 publications, including 10 in magazines,...
-
Forecasting energy consumption and carbon dioxide emission of Vietnam by prognostic models based on explainable machine learning and time series
PublikacjaThis study assessed the usefulness of algorithms in estimating energy consumption and carbon dioxide emissions in Viet- nam, in which the training dataset was used to train the models linear regression, random forest, XGBoost, and AdaBoost, allowing them to comprehend the patterns and relationships between population, GDP, and carbon dioxide emissions, energy consumption. The results revealed that random forest, XGBoost, and AdaBoost...
-
Detekcja obiektów graficznych i ekstrakcja ich parametrów
PublikacjaW rozdziale przedstawiono wybrane metody wykrywania obiektów na obrazach, a także sposoby ich opisywania za pomocą parametrów umożliwiających późniejszą klasyfikację. Zaprezentowano algorytmy analizy obrysu obiektu (podział linii brzegowej na tokeny, wykorzystanie symetrii) oraz analizy tekstury (NxM-gramy, lokalne wzorce, filtry Gabora), omówiono także wykrywanie obiektów metodą AdaBoost.
-
Improving css-KNN Classification Performance by Shifts in Training Data
PublikacjaThis paper presents a new approach to improve the performance of a css-k-NN classifier for categorization of text documents. The css-k-NN classifier (i.e., a threshold-based variation of a standard k-NN classifier we proposed in [1]) is a lazy-learning instance-based classifier. It does not have parameters associated with features and/or classes of objects, that would be optimized during off-line learning. In this paper we propose...
-
Dangerous sound event recognition using Support Vector Machine classifiers
PublikacjaA method of recognizing events connected to danger based on their acoustic representation through Support Vector Machine classification is presented. The method proposed is particularly useful in an automatic surveillance system. The set of 28 parameters used in the classifier consists of dedicated parameters and MPEG-7 features. Methods for parameter calculation are presented, as well as a design of SVM model used for classification....
-
Recognizing emotions on the basis of keystroke dynamics
PublikacjaThe article describes a research on recognizing emotional states on the basis of keystroke dynamics. An overview of various studies and applications of emotion recognition based on data coming from keyboard is presented. Then, the idea of an experiment is presented, i.e. the way of collecting and labeling training data, extracting features and finally training classifiers. Different classification approaches are proposed to be...
-
New Two-center Ellipsoidal Basis Function Neural Network for Fault Diagnosis of Analog Electronic Circuits
PublikacjaIn the paper a new fault diagnosis-oriented neural network and a diagnostic method for localization of parametric faults in Analog Electronic Circuits (AECs) with tolerances is presented. The method belongs to the class of dictionary Simulation Before Test (SBT) methods. It utilizes dictionary fault signatures as a family of identification curves dispersed around nominal positions by component tolerances of the Circuit Under Test...
-
Klasyfikator SVM w zastosowaniu do synchronizacji sygnału OFDM zniekształconego przez kanał wielodrogowy
PublikacjaW pracy przedstawiono analizę przydatności klasyfikatora SVM bazującego na uczeniu maszynowym do estymacji przesunięcia czasowego odebranego symbolu OFDM. Przedstawione wyniki wykazują, że ten klasyfikator potrafi zapewnić synchronizację dla różnych kanałów wielodrogowych o wysokim poziomie szumu. Eksperymenty przeprowadzone w Matlabie z użyciem modeli modulatora i demodulatora wykazały, że w większości przypadków klasyfikator...
-
Diagnostyka analogowych filtrów wielosekcyjnych oparta na klasyfikato-rach neuronowych z dwucentrowymi funkcjami bazowymi
PublikacjaPrzedmiotem artykułu jest zastosowanie klasyfikatora z dwucentrowymi funkcjami bazowymi do lokalizacji uszkodzeń w wielosekcyjnych torach analogowych elektronicznych systemów wbudowanych sterowanych mikrokontrolerem. Przedstawiono szczegóły procedury pomiarowej oraz metody detekcji i lokalizacji uszkodzeń toru analogowego z wykorzysta-niem klasyfikatora DB zaimplementowanego w postaci algorytmicznej w kodzie programu mikrokontrolera....
-
When Neural Networks Meet Decisional DNA: A Promising New Perspective for Knowledge Representation and Sharing
PublikacjaABSTRACT In this article, we introduce a novel concept combining neural network technology and Decisional DNA for knowledge representation and sharing. Instead of using traditional machine learning and knowledge discovery methods, this approach explores the way of knowledge extraction through deep learning processes based on a domain’s past decisional events captured by Decisional DNA. We compare our approach with kNN (k-nearest...
-
The passive operating mode of the linear optical gesture sensor
PublikacjaThe study evaluates the influence of natural light conditions on the effectiveness of the linear optical gesture sensor, working in the presence of ambient light only (passive mode). The orientations of the device in reference to the light source were modified in order to verify the sensitivity of the sensor. A criterion for the differentiation between two states - "possible gesture" and "no gesture" - was proposed. Additionally,...
-
A machine learning approach to classifying New York Heart Association (NYHA) heart failure
PublikacjaAccording to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional...
-
Evaluation of sound event detection, classification and localization in the presence of background noise for acoustic surveillance of hazardous situations
PublikacjaAn evaluation of the sound event detection, classification and localization of hazardous acoustic events in the presence of background noise of different types and changing intensities is presented. The methods for separating foreground events from the acoustic background are introduced. The classifier, based on a Support Vector Machine algorithm, is described. The set of features and samples used for the training of the classifier...