Filtry
wszystkich: 541
Wyniki wyszukiwania dla: classification, optimization
-
Impact of optimization of ALS point cloud on classification
PublikacjaAirborne laser scanning (ALS) is one of the LIDAR technologies (Light Detection and Ranging). It provides information about the terrain in form of a point cloud. During measurement is acquired: spatial data (object’s coordinates X, Y, Z) and collateral data such as intensity of reflected signal. The obtained point cloud is typically applied for generating a digital terrain model (DTM) and a digital surface model (DSM). For DTM...
-
CLASSIFICATION OF RESTRAINTS IN THE OPTIMIZATION PROBLEM OF A COLD-FORMED PROFILE
PublikacjaThis work describes the restraints in the optimization problem. This is an important and complicated issue because it requires taking into account a vast range of information related to the design and production. In order to describe the relations of a specific optimization problem, it is essential to adopt appropriate criteria and to collect information on all kinds of restraints, i.e. boundary conditions. The following paper...
-
Multiplicative Long Short-Term Memory with Improved Mayfly Optimization for LULC Classification
PublikacjaLand Use and Land Cover (LULC) monitoring is crucial for global transformation, sustainable land control, urban planning, urban growth prediction, and the establishment of climate regulations for long-term development. Remote sensing images have become increasingly important in many environmental planning and land use surveys in recent times. LULC is evaluated in this research using the Sat 4, Sat 6, and Eurosat datasets. Various...
-
Classification of Covid-19 using Differential Evolution Chaotic Whale Optimization based Convolutional Neural Network
PublikacjaCOVID-19, also known as the Coronavirus disease-2019, is an transferrable disease that spreads rapidly, affecting countless individuals and leading to fatalities in this worldwide pandemic. The precise and swift detection of COVID-19 plays a crucial role in managing the pandemic's dissemination. Additionally, it is necessary to recognize COVID-19 quickly and accurately by investigating chest x-ray images. This paper proposed a...
-
Swarm Algorithms in Modern Engineering Optimization Problems
PublikacjaComplexity of today engineering problems is constantly increasing. Scientists no longer are facing issues, for which simple, mathematical programming methods are sufficient. Issues like autonomic vehicle navigation or classification are considered to be challenging, and although there exist valid means to solve them, in some cases there still is some place for improvement. With emergence of a new type of optimization techniques...
-
Musical Instrument Separation Applied to Music Genre Classification . Separacja instrumentów muzycznych w zastosowaniu do rozpoznawania gatunków muzycznych
PublikacjaThis paper outlines first issues related to music genre classification and a short description of algorithms used for musical instrument separation. Also, the paper presents proposed optimization of the feature vectors used for music genre recognition. Then, the ability of decision algorithms to properly recognize music genres is discussed based on two databases. In addition, results are cited for another database with regard to...
-
Sign Language Recognition Using Convolution Neural Networks
PublikacjaThe objective of this work was to provide an app that can automatically recognize hand gestures from the American Sign Language (ASL) on mobile devices. The app employs a model based on Convolutional Neural Network (CNN) for gesture classification. Various CNN architectures and optimization strategies suitable for devices with limited resources were examined. InceptionV3 and VGG-19 models exhibited negligibly higher accuracy than...
-
Multimodal Particle Swarm Optimization with Phase Analysis to Solve Complex Equations of Electromagnetic Analysis
PublikacjaIn this paper, a new meta-heuristic method of finding roots and poles of a complex function of a complex variable is presented. The algorithm combines an efficient space exploration provided by the particle swarm optimization (PSO) and the classification of root and pole occurrences based on the phase analysis of the complex function. The method initially generates two uniformly distributed populations of particles on the complex...
-
Specification-Oriented Automatic Design of Topologically Agnostic Antenna Structure
PublikacjaDesign of antennas for modern applications is a challenging task that combines cognition-driven development of topology intertwined with tuning of its parameters using rigorous numerical optimization. However, the process can be streamlined by neglecting the engineering insight in favor of automatic de-termination of structure geometry. In this work, a specification-oriented design of topologically agnostic antenna is considered....
-
Tool Wear Monitoring Using Improved Dragonfly Optimization Algorithm and Deep Belief Network
PublikacjaIn recent decades, tool wear monitoring has played a crucial role in the improvement of industrial production quality and efficiency. In the machining process, it is important to predict both tool cost and life, and to reduce the equipment downtime. The conventional methods need enormous quantities of human resources and expert skills to achieve precise tool wear information. To automatically identify the tool wear types, deep...
-
An automated learning model for twitter sentiment analysis using Ranger AdaBelief optimizer based Bidirectional Long Short Term Memory
PublikacjaSentiment analysis is an automated approach which is utilized in process of analysing textual data to describe public opinion. The sentiment analysis has major role in creating impact in the day-to-day life of individuals. However, a precise interpretation of text still relies as a major concern in classifying sentiment. So, this research introduced Bidirectional Long Short Term Memory with Ranger AdaBelief Optimizer (Bi-LSTM RAO)...
-
Method of Decision-Making Logic Discovery in the Business Process Textual Data
PublikacjaGrowing amount of complexity and enterprise data creates a need for novel business process (BP) analysis methods to assess the process optimization opportunities. This paper proposes a method of BP analysis while extracting the knowledge about Decision-Making Logic (DML) in a form of taxonomy. In this taxonomy, researchers consider the routine, semi-cognitive and cognitive DML levels as functions of BP conceptual aspects of Resources,...
-
Energy-Aware High-Performance Computing: Survey of State-of-the-Art Tools, Techniques, and Environments
PublikacjaThe paper presents state of the art of energy-aware high-performance computing (HPC), in particular identification and classification of approaches by system and device types, optimization metrics, and energy/power control methods. System types include single device, clusters, grids, and clouds while considered device types include CPUs, GPUs, multiprocessor, and hybrid systems. Optimization goals include various combinations of...
-
Application of Multivariate Adaptive Regression Splines (MARSplines) for Predicting Hansen Solubility Parameters Based on 1D and 2D Molecular Descriptors Computed from SMILES String
PublikacjaA new method of Hansen solubility parameters (HSPs) prediction was developed by combining the multivariate adaptive regression splines (MARSplines) methodology with a simple multivariable regression involving 1D and 2D PaDEL molecular descriptors. In order to adopt the MARSplines approach to QSPR/QSAR problems, several optimization procedures were proposed and tested. The effectiveness of the obtained models was checked via standard...
-
A comparative study of English viseme recognition methods and algorithms
PublikacjaAn elementary visual unit – the viseme is concerned in the paper in the context of preparing the feature vector as a main visual input component of Audio-Visual Speech Recognition systems. The aim of the presented research is a review of various approaches to the problem, the implementation of algorithms proposed in the literature and a comparative research on their effectiveness. In the course of the study an optimal feature vector construction...
-
A comparative study of English viseme recognition methods and algorithm
PublikacjaAn elementary visual unit – the viseme is concerned in the paper in the context of preparing the feature vector as a main visual input component of Audio-Visual Speech Recognition systems. The aim of the presented research is a review of various approaches to the problem, the implementation of algorithms proposed in the literature and a comparative research on their effectiveness. In the course of the study an optimal feature vector...
-
Aeration Process in Bioreactors as the Main Energy Consumer in a Wastewater Treatment Plant. Review of Solutions and Methods of Process Optimization
PublikacjaDue to the key role of the biological decomposition process of organic compounds in wastewater treatment, a very important thing is appropriate aeration of activated sludge, because microorganisms have to be supplied with an appropriate amount of oxygen. Aeration is one of the most energy-consuming processes in the conventional activated sludge systems of wastewater treatment technology (may consume from 50% to 90% of electricity...
-
DETERMINATION OF OBJECTIVES FOR URBAN FREIGHT POLICY
PublikacjaBackground: Decisions regarding strategic planning of urban freight transport very often are based on superficial assumptions inadequately reflecting the actual character of encountered challenges. The trend may be observed to adapt isolated solutions without supporting measures and verification of expected outcomes. Selected urban freight solutions have a significant potential to alleviate transport related problems, but they...
-
Performance Comparison of Automatically Generated Topologically Agnostic Patch Antennas
PublikacjaReal-world antenna design typically relies on empirical methods, where the development starts with structure synthesis followed by its iterative adjustments to achieve the desired performance. Although the outlined approach proved to be successful, it is also dependent on engineering experience. Alternatively, development can be performed automatically based on the specifications. In this work, an unsupervised design of topologically...
-
Weighted Clustering for Bees Detection on Video Images
PublikacjaThis work describes a bee detection system to monitor bee colony conditions. The detection process on video images has been divided into 3 stages: determining the regions of interest (ROI) for a given frame, scanning the frame in ROI areas using the DNN-CNN classifier, in order to obtain a confidence of bee occurrence in each window in any position and any scale, and form one detection window from a cloud of windows provided by...
-
Voice command recognition using hybrid genetic algorithm
PublikacjaAbstract: Speech recognition is a process of converting the acoustic signal into a set of words, whereas voice command recognition consists in the correct identification of voice commands, usually single words. Voice command recognition systems are widely used in the military, control systems, electronic devices, such as cellular phones, or by people with disabilities (e.g., for controlling a wheelchair or operating a computer...
-
Towards Understanding the Health Aspects of the Processing of Lignocellulosic Fillers
PublikacjaHealth and safety issues should be addressed during the development and investigation of the industrial processes. In order to develop a sustainable process and fully evaluate its benefits and drawbacks for its optimization, it is crucial to determine its impact on the surrounding environment. This study aimed to assess the emission of volatile organic compounds during the modification of lignocellulosic fillers with passive dosimetry....
-
Neural network training with limited precision and asymmetric exponent
PublikacjaAlong with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...
-
INWESTYCJE ALTERNATYWNE – OPŁACALNOŚĆ A RYZYKO
PublikacjaW rozprawie określono pojęcie oraz miejsce inwestycji alternatywnych na rynku inwestycyjnym. Wskazane zostały atrybuty tych inwestycji. Zbudowano klasyfikację inwestycji alternatywnych w podziale na kategorie oraz typy wraz ze wskazaniem powiązań pomiędzy poszczególnymi produktami. Dokonano autorskiego podziału analizowanych inwestycji na aktywne i pasywne. Zbadano stopę zwrotu i ryzyko pięćdziesięciu inwestycji alternatywnych,...
-
Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support
PublikacjaIn this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...
-
Optimal selection of input features and an acompanying neural network structure for the classification purposes - skin lesions case study
PublikacjaMalignant melanomas are the most deadly type of skin cancers however detected early enough give a high chances for successful treatment. The last years saw the dynamic growth of interest of automatic computer-aided skin cancer diagnosis. Every month brings new research results on new approaches to this problem, new methods of preprocessing, new classifiers, new ideas to follow etc. In particular, the rapid development of dermatoscopy,...
-
Physics augmented classification of fNIRS signals
PublikacjaBackground. Predictive classification favours performance over semantics. In traditional predictive classification pipelines, feature engineering is often oblivious to the underlying phenomena. Hypothesis. In applied domains such as functional Near Infrared Spectroscopy (fNIRS), the exploitation of physical knowledge may improve the discriminative quality of our observation set. Aims. Give exemplary evidence that intervening the...
-
Real and imaginary motion classification based on rough set analysis of EEG signals for multimedia applications
PublikacjaRough set-based approach to the classification of EEG signals of real and imaginary motion is presented. The pre-processing and signal parametrization procedures are described, the rough set theory is briefly introduced, and several classification scenarios and parameters selection methods are proposed. Classification results are provided and discussed with their potential utilization for multimedia applications controlled by the...
-
Flood Classification in a Natural Wetland for Early Spring Conditions Using Various Polarimetric SAR Methods
PublikacjaAbstract--- One of the major limitations of remote sensing flood detection is the presence of vegetation. Our study focuses on a flood classification using Radarsat-2 Quad-Pol data in a natural floodplain during leafless, dry vegetation (early spring) state. We conducted a supervised classification of a data set composed of nine polarimetric decompositions and Shannon entropy followed by the predictors' importance estimation to...
-
Toward Human Chromosome Knowledge Engine
PublikacjaHuman chromosomes carry genetic information about our life. Chromosome classification is crucial for karyotype analysis. Existing chromosome classification methods do not take into account reasoning, such as: analyzing the relationship between variables, modeling uncertainty, and performing causal reasoning. In this paper, we introduce a knowledge engine for reasoning-based human chromosome classification that stores knowledge...
-
Comparison of selected electroencephalographic signal classification methods
PublikacjaA variety of methods exists for electroencephalographic (EEG) signals classification. In this paper, we briefly review selected methods developed for such a purpose. First, a short description of the EEG signal characteristics is shown. Then, a comparison between the selected EEG signal classification methods, based on the overview of research studies on this topic, is presented. Examples of methods included in the study are: Artificial...
-
Using similar classification tasks in feature extractor learning
PublikacjaThe article presents and experimentally verify the idea of automatic construction of feature extractors in classification problems. The extractors are created by genetic programming techniques using classification examples taken from other problems then the problem under consideration.
-
Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm
PublikacjaSatellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification...
-
Selection of Relevant Features for Text Classification with K-NN
PublikacjaIn this paper, we describe five features selection techniques used for a text classification. An information gain, independent significance feature test, chi-squared test, odds ratio test, and frequency filtering have been compared according to the text benchmarks based on Wikipedia. For each method we present the results of classification quality obtained on the test datasets using K-NN based approach. A main advantage of evaluated...
-
Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model
PublikacjaThis work attempts to meet the challenges associated with the classification of LIDAR point clouds by means of deep learning. In addition to achieving high accuracy, the designed system should allow the classification of point clouds covering an area of several dozen square kilometers within a reasonable time interval. Therefore, it must be characterized by fast processing and efficient use of memory. Thus, the most popular approaches...
-
Objects classification based on their physical sizes for detection of events in camera images
PublikacjaIn the paper, a method of estimation of the physical sizes of the objects tracked in the video surveillance system, and a simple module for object classification based on the estimated physical sizes, are presented. The results of object classification are then used for automatic detection of various types of events in the camera image.
-
Using angular dependence of multibeam echo features in seabed classification
PublikacjaThe new approach to seabed classification based on processing multibeam sonar echoes is presented. The multibeam sonars, besides their well verified and widely used applications like high resolution bathymetry measurements or underwater object imaging, are also the promising tool in seafloor identification and classification, having several advantages over conventional single beam echosounders. The proposed seabed classification...
-
Text classifiers for automatic articles categorization
PublikacjaThe article concerns the problem of automatic classification of textual content. We present selected methods for generation of documents representation and we evaluate them in classification tasks. The experiments have been performed on Wikipedia articles classified automatically to their categories made by Wikipedia editors.
-
An Improved Convolutional Neural Network for Steganalysis in the Scenario of Reuse of the Stego-Key
PublikacjaThe topic of this paper is the use of deep learning techniques, more specifically convolutional neural networks, for steganalysis of digital images. The steganalysis scenario of the repeated use of the stego-key is considered. Firstly, a study of the influence of the depth and width of the convolution layers on the effectiveness of classification was conducted. Next, a study on the influence of depth and width of fully connected...
-
Systematic approach to binary classification of images in video streams using shifting time windows
Publikacjain the paper, after pointing out of realistic recordings and classifications of their frames, we propose a new shifting time window approach for improving binary classifications. We consider image classification in tewo steps. in the first one the well known binary classification algorithms are used for each image separately. In the second step the results of the previous step mare analysed in relatively short sequences of consecutive...
-
Analyzing the Impact of Simulated Multispectral Images on Water Classification Accuracy by Means of Spectral Characteristics
PublikacjaRemote sensing is widely applied in examining the parameters of the state and quality of water. Spectral characteristics of water are strictly connected with the dispersion of electromagnetic radiation by suspended matter and the absorp-tion of radiation by water and chlorophyll a and b.Multispectral sensor ALI has bands within the ranges of electromagnetic radia-tion: blue and infrared, absent in sensors such as Landsat, SPOT,...
-
A Comprehensive Investigation of Knowledge Management Publications
PublikacjaRecent trends in knowledge management (KM) have increasingly indicated a lack of agreement, integration and classification between different KM domains. As such, experts are inadequately equipped when attempting to classify KM into their specific areas that could effectively contribute to a technocratic approach behind the organizational strategy. This paper illustrates a method of classifying KM publications by using a scheme...
-
Monitoring of Odour Nuisance from Landfill Using Electronic Nose
PublikacjaThe paper presents the results of investigation on classification of atmospheric air samples collected in a vicinity of municipal landfill with respect to their odour nuisance. The research was conducted using a prototype of electronic nose instrument and a commercial electronic nose of Fast/Flash GC type –HERACLES II. The prototype was equipped with a set of six semiconductor sensors by FIGARO Co.. Classification of the air samples...
-
Contextual ontology for tonality assessment
Publikacjaclassification tasks. The discussion focuses on two important research hypotheses: (1) whether it is possible to construct such an ontology from a corpus of textual document, and (2) whether it is possible and beneficial to use inferencing from this ontology to support the process of sentiment classification. To support the first hypothesis we present a method of extraction of hierarchy of contexts from a set of textual documents...
-
Automatic music genre classification based on musical instrument track separation / Automatyczna klasyfikacja gatunku muzycznego wykorzystująca algorytm separacji dźwięku instrumentó muzycznych
PublikacjaThe aim of this article is to investigate whether separating music tracks at the pre-processing phase and extending feature vector by parameters related to the specific musical instruments that are characteristic for the given musical genre allow for efficient automatic musical genre classification in case of database containing thousands of music excerpts and a dozen of genres. Results of extensive experiments show that the approach...
-
Classification of Music Genres by Means of Listening Tests and Decision Algorithms
PublikacjaThe paper compares the results of audio excerpt assignment to a music genre obtained in listening tests and classification by means of decision algorithms. A short review on music description employing music styles and genres is given. Then, assumptions of listening tests to be carried out along with an online survey for assigning audio samples to selected music genres are presented. A framework for music parametrization is created...
-
Segmentation-Based BI-RADS ensemble classification of breast tumours in ultrasound images
PublikacjaBackground: The development of computer-aided diagnosis systems in breast cancer imaging is exponential. Since 2016, 81 papers have described the automated segmentation of breast lesions in ultrasound images using arti- ficial intelligence. However, only two papers have dealt with complex BI-RADS classifications. Purpose: This study addresses the automatic classification of breast lesions into binary classes (benign vs. ma- lignant)...
-
From Scores to Predictions in Multi-Label Classification: Neural Thresholding Strategies
PublikacjaIn this paper, we propose a novel approach for obtaining predictions from per-class scores to improve the accuracy of multi-label classification systems. In a multi-label classification task, the expected output is a set of predicted labels per each testing sample. Typically, these predictions are calculated by implicit or explicit thresholding of per-class real-valued scores: classes with scores exceeding a given threshold value...
-
Deep learning approach on surface EEG based Brain Computer Interface
PublikacjaIn this work we analysed the application of con-volutional neural networks in motor imagery classification for the Brain Computer Interface (BCI) purposes. To increase the accuracy of classification we proposed the solution that combines the Common Spatial Pattern (CSP) with convolutional network (ConvNet). The electroencephalography (EEG) is one of the modalities we try to use for controlling the prosthetic arm. Therefor in this...
-
Comparison of Quality Evaluation of Agricultural Distillates Using Prototype of Electronic Nose and Fast/Flash GC
PublikacjaThe paper presents the results of investigation on quality evaluation of agricultural distillates using a prototype of electronic nose instrument and a commercial electronic nose of Fast/Flash GC type – HERACLES II. The prototype was equipped with a set of six semiconductor sensors by FIGARO Co.. In case of the prototype volatile fraction of the agricultural distillate was prepared via barbotage process. HERACLES II analysed the...