Filtry
wszystkich: 4224
-
Katalog
- Publikacje 2887 wyników po odfiltrowaniu
- Czasopisma 256 wyników po odfiltrowaniu
- Konferencje 35 wyników po odfiltrowaniu
- Wydawnictwa 1 wyników po odfiltrowaniu
- Osoby 85 wyników po odfiltrowaniu
- Projekty 6 wyników po odfiltrowaniu
- Laboratoria 1 wyników po odfiltrowaniu
- Kursy Online 47 wyników po odfiltrowaniu
- Wydarzenia 7 wyników po odfiltrowaniu
- Dane Badawcze 899 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: NEURAL NETS
-
Accuracy Investigations of Turbine Blading Neural Models Applied to Thermal and Flow Diagnostics
PublikacjaPossibility of replacing computional fluid dynamics simulations by a neural model for fluid flow and thermal diagnostics of steam turbines is investigated. Results of calculations of velocity magnitude of steam for 3D model of the stator of steam turbine is presented.
-
Multi-Camera Vehicle Tracking Using Local Image Features and Neural Networks
PublikacjaA method for tracking moving objects crossing fields of view of multiple cameras is presented. The algorithm utilizes Artificial Neural Networks (ANNs). Each ANN is trained to recognize images of one moving object acquired by a single camera. Local image features calculated in the vicinity of automatically detected interest points are used as object image parameters. Next, ANNs are employed to identify the same objects captured...
-
Diagnosing wind turbine condition employing a neural network to the analysis of vibroacoustic signals
PublikacjaIt is important from the economic point of view to detect damage early in the wind turbines before failures occur. For this purpose, a monitoring device was built that analyzes both acoustic signals acquired from the built-in non-contact acoustic intensity probe, as well as from the accelerometers, mounted on the internal devices in the nacelle. The signals collected in this way are used for long-term training of the autoencoder...
-
Heavy duty vehicle fuel consumption modelling using artificial neural networks
PublikacjaIn this paper an artificial neural network (ANN) approach to modelling fuel consumption of heavy duty vehicles is presented. The proposed method uses easy accessible data collected via CAN bus of the truck. As a benchmark a conventional method, which is based on polynomial regression model, is used. The fuel consumption is measured in two different tests, performed by using a unique test bench to apply the load to the engine. Firstly,...
-
Predicting the impact of traffic–induced vibrations on buildings using artificial neural networks
PublikacjaTraffic–induced vibrations may constitute a considerable load to a building, cause cracking of plaster, cracks in load–bearing elements or even a global structural collapse of the whole structure [1-4]. Vibrations measurements of real structures are costly and laborious, not justified in all cases. The aim of the paper is to create an original algorithm, to predict the negative dynamic impact on the examined residential building...
-
Aerodynamic excitations generated in turbine shroud clearance determined bymeans of neural networks
PublikacjaSiły aerodynamiczne generowane w uszczelnieniach turbinowych z reguły opisywane są modelem liniowym. Przy dużych drganiach wirnika sposób ten daje niezbyt dokładne wyniki. Zaproponowano wykorzystanie sieci neuronowych do określania sił ciśnieniowych powstających w uszczelnieniu. Wyniki porównano z badaniami eksperymentalnymi.
-
A Novel Iterative Decoding for Iterated Codes Using Classical and Convolutional Neural Networks
PublikacjaForward error correction is crucial for communication, enabling error rate or required SNR reduction. Longer codes improve correction ratio. Iterated codes offer a solution for constructing long codeswith a simple coder and decoder. However, a basic iterative code decoder cannot fully exploit the code’s potential, as some error patterns within its correction capacity remain uncorrected.We propose two neural network-assisted decoders:...
-
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublikacjaThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublikacjaThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
Adaptive Hyperparameter Tuning within Neural Network-based Efficient Global Optimization
PublikacjaIn this paper, adaptive hyperparameter optimization (HPO) strategies within the efficient global optimization (EGO) with neural network (NN)-based prediction and uncertainty (EGONN) algorithm are proposed. These strategies utilize Bayesian optimization and multiarmed bandit optimization to tune HPs during the sequential sampling process either every iteration (HPO-1itr) or every five iterations (HPO-5itr). Through experiments using...
-
Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks
PublikacjaThe presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods....
-
Supply current signal and artificial neural networks in the induction motor bearings diagnostics
PublikacjaThis paper contains research results of the diagnostics of induction motor bearings based on measurement of the supply current with usage of artificial neural networks. Bearing failure amount is greater than 40% of all engine failures, which makes their damage-free operation crucial. Tests were performed on motors with intentionally made bearings defects. Chapter 2 introduces the concept of artificial neural networks. It presents...
-
The application of neural networks in forecasting the influence of traffic-induced vibrations on residential buildings
PublikacjaTraffic-induced vibrations may cause the cracking of plaster, damage to structural elements and, in extreme cases, may even lead to the structural collapse of residential buildings. The aim of this article is to analyse the effectiveness of a method of forecasting the impact of vibrations on residential buildings using the concept of artificial intelligence. The article presents several alternative forecasting systems for which...
-
A compact smart sensor based on a neural classifier for objects modeled by Beaunier's model
PublikacjaA new solution of a smart microcontroller sensor based on a simple direct sensor-microcontroller interface for technical objects modeled by two-terminal networks and by the Beaunier’s model of anticorrosion coating is proposed. The tested object is stimulated by a square pulse and its time voltage response is sampled four times by the internal ADC of microcontroller. A neural classifier based on measurement data classifies the...
-
EPILEPTIC BEHAVIOR WITH A DISTINGUISHED PREICTAL PERIOD IN A LARGE-SCALE NEURAL NETWORK MODEL
PublikacjaWe present a neural network model capable of reproducing focal epileptic behavior. An important property of our model is the distinguished preictal state. This novel feature may shed light on the pathologi-cal mechanisms of seizure generation and, in perspective, help develop new therapeutic strategies to manage refractory partial epilepsy.
-
Neural Oscillation During Mental Imagery in Sport: An Olympic Sailor Case Study
PublikacjaThe purpose of the current study was to examine the cortical correlates of imagery depending on instructional modality (guided vs. self-produced) using various sports-related scripts. According to the expert-performance approach, we took an idiosyncratic perspective analyzing the mental imagery of an experienced two-time Olympic athlete to verify whether different instructional modalities of imagery (i.e., guided vs. self-produced)...
-
Development of a tropical disease diagnosis system using artificial neural network and GIS
PublikacjaExpert systems for diagnosis of tropical diseases have been developed and implemented for over a decade with varying degrees of success. While the recent introduction of artificial neural networks has helped to improve the diagnosis accuracy of such systems, this aspect is still negatively affected by the number of supported diseases. A large number of supported diseases usually corresponds to a high number of overlapping symptoms,...
-
PTD4 Peptide Increases Neural Viability in an In Vitro Model of Acute Ischemic Stroke
PublikacjaIschemic stroke is a disturbance in cerebral blood flow caused by brain tissue ischemia and hypoxia. We optimized a multifactorial in vitro model of acute ischemic stroke using rat primary neural cultures. This model was exploited to investigate the pro-viable activity of cell-penetrating peptides: arginine-rich Tat(49–57)-NH2 (R49KKRRQRRR57-amide) and its less basic analogue, PTD4 (Y47ARAAARQARA57-amide). Our model included glucose...
-
Highlighting interlanguage phoneme differences based on similarity matrices and convolutional neural network
PublikacjaThe goal of this research is to find a way of highlighting the acoustic differences between consonant phonemes of the Polish and Lithuanian languages. For this purpose, similarity matrices are employed based on speech acoustic parameters combined with a convolutional neural network (CNN). In the first experiment, we compare the effectiveness of the similarity matrices applied to discerning acoustic differences between consonant...
-
Physics-guided neural networks (PGNNs) to solve differential equations for spatial analysis
PublikacjaNumerous examples of physically unjustified neural networks, despite satisfactory performance, generate contradictions with logic and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage involves extending...
-
Neural modelling of dynamic systems with time delays based on an adjusted NEAT algorithm
PublikacjaA problem related to the development of an algorithm designed to find an architecture of artificial neural network used for black-box modelling of dynamic systems with time delays has been addressed in this paper. The proposed algorithm is based on a well-known NeuroEvolution of Augmenting Topologies (NEAT) algorithm. The NEAT algorithm has been adjusted by allowing additional connections within an artificial neural network and...
-
Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening
PublikacjaBeta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural...
-
Towards bees detection on images: study of different color models for neural networks
PublikacjaThis paper presents an approach to bee detection in videostreams using a neural network classifier. We describe the motivationfor our research and the methodology of data acquisition. The maincontribution to this work is a comparison of different color models usedas an input format for a feedforward convolutional architecture appliedto bee detection. The detection process has is based on a neural...
-
Adsorption chiller in a combined heating and cooling system: simulation and optimization by neural networks
Publikacja -
Artificial Neural Networks in Classification of Steel Grades Based on Non-Destructive Tests
Publikacja -
Designing the Composition of Cement Stabilized Rammed Earth Using Artificial Neural Networks
Publikacja -
The Influence of Input Data Standardization Method on Prediction Accuracy of Artificial Neural Networks
Publikacja -
Self-organizing Artificial Neural Networks into Hydrographic Big Data Reduction Process
Publikacja -
Leveraging Training Strategies of Artificial Neural Network for Classification of Multiday Electromyography Signals
Publikacja -
System for monitoring road slippery based on CCTV cameras and convolutional neural networks
PublikacjaThe slipperiness of the surface is essential for road safety. The growing number of CCTV cameras opens the possibility of using them to automatically detect the slippery surface and inform road users about it. This paper presents a system of developed intelligent road signs, including a detector based on convolutional neural networks (CNNs) and the transferlearning method employed to the processing of images acquired with video...
-
Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors
PublikacjaIn the paper we provide thorough benchmarking of deep neural network (DNN) training on modern multi- and many-core Intel processors in order to assess performance differences for various deep learning as well as parallel computing parameters. We present performance of DNN training for Alexnet, Googlenet, Googlenet_v2 as well as Resnet_50 for various engines used by the deep learning framework, for various batch sizes. Furthermore,...
-
Comparison of Selected Neural Network Models Used for Automatic Liver Tumor Segmentation
PublikacjaAutomatic and accurate segmentation of liver tumors is crucial for the diagnosis and treatment of hepatocellular carcinoma or metastases. However, the task remains challenging due to imprecise boundaries and significant variations in the shape, size, and location of tumors. The present study focuses on tumor segmentation as a more critical aspect from a medical perspective, compared to liver parenchyma segmentation, which is the...
-
Distinct hippocampal-prefrontal neural assemblies coordinate memory encoding, maintenance, and recall
PublikacjaShort-term memory enables incorporation of recent experience into subsequent decision-making. This processing recruits both the prefrontal cortex and hippocampus, where neurons encode task cues, rules, and outcomes. However, precisely which information is carried when, and by which neurons, remains unclear. Using population decoding of activity in rat medial prefrontal cortex (mPFC) and dorsal hippocampal CA1, we confirm that mPFC...
-
Application of fuzzy neural network for supporting measurements and control in a wastewater treatment plant
PublikacjaOczyszczanie ścieków jest jednym z ważniejszych aspektów ochrony środowiska. Nowoczesne systemy kontroli w oczyszczalniach ścieków pozwalają na poprawę jakości procesu oczyszczania redukując jednocześnie koszty. Systemy kontroli i optymalizacji jakie odkilku lat opracowuje się dla oczyszczalni ścieków, bazują zazwyczaj na skomplikowanych modelach matematycznych. Kluczowym problemem w zastosowaniu tych systemów jest duża liczba...
-
IPNES - Interpreted Petri Net for Embedded Systems
Publikacja -
On neutral differential equations and the monotone iterative method
PublikacjaThe application of the monotone iterative method to neutral differential equations with deviating arguments is considered in this paper. We formulate existence results giving sufficient conditions which guarantee that such problems have solutions. This approach is new and to the Authors' knowledge, this is the first paper when the monotone iterative method is applied to neutral first-order differential equations with deviating...
-
Life-long norepinephrine transporter (NET) knock-out leads to the increase in the NET mRNA in brain regions rich in norepinephrine terminals
Publikacja -
Solving Multi-Ship Encounter Situations by Evolutionary Sets of Cooperating Trajectories
PublikacjaAutor zaproponował nowe podejście do sytuacji kolizyjnych na morzu. Polega ono na zastąpieniu ewolucyjnej trajektorii własnej ewolucyjnym zbiorem trajektorii wszystkich obiektów. Podejście to umożliwia predykcję manewrowania obiektów obcych przy jednoczesnym zachowaniu efektywności algorytmów ewolucyjnych. Dodatkowo, opracowany już wstępnie przez autorów zbiór kryteriów, ograniczeń i operatorów specjalizowanych powinien zapewnić...
-
Evolutionary Sets Of Safe Ship Trajectories: A New Approach To Collision Avoidance
PublikacjaThe paper introduces a new method of solving multi-ship encounter situations for both open waters and restricted water regions. The method, called evolutionary sets of safe trajectories combines some of the assumptions of game theory with evolutionary programming and aims to find optimal set of safe trajectories of all ships involved in an encounter situation. In a two-ship encounter situation it enables the operator of an on-board...
-
Evolutionary Sets of Safe Ship Trajectories Within Traffic Separation Schemes
PublikacjaThe paper presents the continuation of the author's research on Evolutionary Sets of Safe Ship Trajectories (ESoSST) methodology. In an earlier paper (Szlapczynski, 2011) the author described the foundations of this methodology, which used Evolutionary Algorithms (EA) to search for an optimal set of safe trajectories for all the ships involved in an encounter. The methodology was originally designed for open waters or restricted...
-
Fuzzy Sets in the GIS Environment in the Location of Objects on the Surface of Water Bodies
PublikacjaThe issue presented here focuses on concerns about the localization of the object on water surface. The article shows how to facilitate localization process by applying mathematical solutions characterized by simplicity, rapid action and delivering credible results. The paper shows the results of background experiments, which enabled to collect technical parameters needed for conducting simulation testing. The research has been...
-
Fourier transforms on Cantor sets: A study in non-Diophantine arithmetic and calculus
PublikacjaFractals equipped with intrinsic arithmetic lead to a natural definition of differentiation, integration, and complex structure. Applying the formalism to the problem of a Fourier transform on fractals we show that the resulting transform has all the required basic properties. As an example we discuss a sawtooth signal on the ternary middle-third Cantor set. The formalism works also for fractals that are not self-similar.
-
Fake News: Possibility of Identification in Post-Truth Media Ecology System
PublikacjaThe main aim of the article is identification of the attitudes towards the processes of identification and verification of fake news in the environment of digital media. The subject of the research refers to the users’ attitudes towards fake news. As indicated by the research, the attitudes towards fake news are not unambiguous. About 2/3 of the respondents claim that they are not able to distinguish fake news from true information;...
-
Application of Doubly Connected Dominating Sets to Safe Rectangular Smart Grids
PublikacjaSmart grids, together with the Internet of Things, are considered to be the future of the electric energy world. This is possible through a two-way communication between nodes of the grids and computer processing. It is necessary that the communication is easy and safe, and the distance between a point of demand and supply is short, to reduce the electricity loss. All these requirements should be met at the lowest possible cost....
-
Doctors’ attitudes in the situation of delivering bad news: patients’ experience and expectations
Publikacja -
Behavioural genetics in Polish print news media between 2000-2014
Publikacja -
Numerical Study of the Impinging Jets Formed by an Injector with Different Nozzle Diameters
PublikacjaThe collision of two or more liquid jets may provide considerable atomisation and efficient mixing of injected substances at the same time. This phenomenon is used, among others, in rocket engines, where the fuel and oxidiser are introduced separately and almost immediately mixed through self-impingement. Depending on the injection and operating conditions, diverse configurations of impinging jets are used, such as doublets,...
-
Chaotic invariant sets of vibro-impact systems with one degree of freedom
Publikacja -
Spatial differentiation of road safety in Europe based on NUTS-2 regions
PublikacjaRoad safety varies significantly across the regions in Europe. To understand the factors behind this differentiation and the effects they have, data covering 263 NUTS-2 (Nomenclature of Territorial Units for Statistics) regions across Europe (European Union and Norway) have been analysed. The assessment was made using Geographically Weighted Regression (GWR). As a dependent variable the Road Fatality Rate (RFR – number of fatalities...
-
Fake News: Possibility of Identification in Post-Truth Media Ecology System
PublikacjaInformation comes as basic good which affects social well-being. A modern society and a modern state – its administration, education, culture, national economy and armed forces – cannot function efficiently without a rationally developed field of information. The quality of the functioning of that system depends on a specific feature of information, that is namely: its reliability which makes it possible for us to evaluate accuracy,...