Filters
total: 1828
filtered: 1436
-
Catalog
Chosen catalog filters
displaying 1000 best results Help
Search results for: RBF NEURAL NETWORKS
-
Comparing the Effectiveness of ANNs and SVMs in Forecasting the Impact of Traffic-Induced Vibrations on Building
PublicationTraffic - induced vibrations may cause damage to structural elements and may even lead to structural collapse. The aim of the article is to compare the effectiveness of algorithms in forecasting the impact of vibrations on buildings using the Machine Learning (ML) methods. The paper presents two alternative approaches by using Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). Factors that may affect traffic-induced...
-
Impact of Visual Image Quality on Lymphocyte Detection Using YOLOv5 and RetinaNet Algorithms
PublicationLymphocytes, a type of leukocytes, play a vital role in the immune system. The precise quantification, spatial arrangement and phenotypic characterization of lymphocytes within haematological or histopathological images can serve as a diagnostic indicator of a particular lesion. Artificial neural networks, employed for the detection of lymphocytes, not only can provide support to the work of histopathologists but also enable better...
-
Analysis of the Capability of Deep Learning Algorithms for EEG-based Brain-Computer Interface Implementation
PublicationMachine learning models have received significant attention for their exceptional performance in classifying electroencephalography (EEG) data. They have proven to be highly effective in extracting intricate patterns and features from the raw signal data, thereby contributing to their success in EEG classification tasks. In this study, we explore the possibilities of utilizing contemporary machine learning algorithms in decoding...
-
Creation of Hydrogen Bonded 1D Networks by Cocrystallization of N,N`-bis(2-pyridyl) aryldiamines with Dicarboxylic Acids.Tworzenie 1D sieci krystalicznych poprzez kokrystalizację N,N` -bis(2-piry- dylo) arylodiamin z kwasami dikarboksylowymi.
PublicationZsyntetyzowano szereg N,N`-bis(2-pirydylo) arylodiamin, a następnie otrzymano serię kompleksów w/w amin z kwasami dikarboksylowymi oraz kwasem kwadratowym w postaci monokryształów. Jednostki N,N`-bis(2-pirydylo) arylodiamin i kwasy dikarboksylowe oddziaływują ze sobą poprzez wiązania wodorowe tworząc ośmioczłonowy cykliczny układ. W kompleksach 1:1 cząsteczki układają się w jedno-wymiarową sieć krystaliczną tworzoną przy udziale...
-
Fusion-based Representation Learning Model for Multimode User-generated Social Network Content
PublicationAs mobile networks and APPs are developed, user-generated content (UGC), which includes multi-source heterogeneous data like user reviews, tags, scores, images, and videos, has become an essential basis for improving the quality of personalized services. Due to the multi-source heterogeneous nature of the data, big data fusion offers both promise and drawbacks. With the rise of mobile networks and applications, UGC, which includes...
-
Embedded Representations of Wikipedia Categories
PublicationIn this paper, we present an approach to building neural representations of the Wikipedia category graph. We test four different methods and examine the neural embeddings in terms of preservation of graphs edges, neighborhood coverage in representation space, and their influence on the results of a task predicting parent of two categories. The main contribution of this paper is application of neural representations for improving the...
-
Data Acquisition and Processing for GeoAI Models to Support Sustainable Agricultural Practices
PublicationThere are growing opportunities to leverage new technologies and data sources to address global problems related to sustainability, climate change, and biodiversity loss. The emerging discipline of GeoAI resulting from the convergence of AI and Geospatial science (Geo-AI) is enabling the possibility to harness the increasingly available open Earth Observation data collected from different constellations of satellites and sensors...
-
Deep Features Class Activation Map for Thermal Face Detection and Tracking
PublicationRecently, capabilities of many computer vision tasks have significantly improved due to advances in Convolutional Neural Networks. In our research, we demonstrate that it can be also used for face detection from low resolution thermal images, acquired with a portable camera. The physical size of the camera used in our research allows for embedding it in a wearable device or indoor remote monitoring solution for elderly and disabled...
-
Early warning models against bankruptcy risk for Central European and Latin American enterprises
PublicationThis article is devoted to the issue of forecasting the bankruptcy risk of enterprises in Latin America and Central Europe. The author has used statistical and soft computing methods to program the prediction models. It compares the effectiveness of twelve different early warningmodels for forecasting the bankruptcy risk of companies. In the research conducted, the author used data on 185 companies listed on the Warsaw Stock Exchange...
-
Automatic Rhythm Retrieval from Musical Files
PublicationThis paper presents a comparison of the effectiveness of two computational intelligence approaches applied to the task of retrieving rhythmic structure from musical files. The method proposed by the authors of this paper generates rhythmic levels first, and then uses these levels to compose rhythmic hypotheses. Three phases: creating periods, creating simplified hypotheses and creating full hypotheses are examined within this study....
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
Investigating Feature Spaces for Isolated Word Recognition
PublicationThe study addresses the issues related to the appropriateness of a two-dimensional representation of speech signal for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and time-frequency signal representation converted to the investigated feature spaces. In particular, waveforms and fractal dimension features of the signal were chosen for the time domain, and...
-
Optimized Deep Learning Model for Flood Detection Using Satellite Images
PublicationThe increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...
-
Underground Water Level Prediction in Remote Sensing Images Using Improved Hydro Index Value with Ensemble Classifier
PublicationThe economic sustainability of aquifers across the world relies on accurate and rapid estimates of groundwater storage changes, but this becomes difficult due to the absence of insitu groundwater surveys in most areas. By closing the water balance, hydrologic remote sensing measures offer a possible method for quantifying changes in groundwater storage. However, it is uncertain to what extent remote sensing data can provide an...
-
MAC contention in a wireless LAN with noncooperative anonymous stations
PublicationRozpatruje się model sieci bezprzewodowej wykorzystywanej przez wzajemnie nieprzenikalne grupy stacji anonimowych. Przy ustalonej regule wyłaniania zwycięzcy rywalizacji o dostęp do medium, stacje posiadają swobodę wyboru strategii selekcji szczeliny rywalizacyjnej. Dla szerokiego zbioru możliwych strategii proponuje się metodologię ich oceny i testowania wydajności opartą na pojęciu zbliżonym do ewolucyjnej stabilności.
-
Design of a Coplanar Waveguide-Fed Wideband Compact-Size Circularly Polarized Antenna and polarization-sense alteration
PublicationThis paper presents the design and validation of a geometrically simple circularly polarized(CP) structure featuring flat gain in the sub-6 GHz 5th generation spectrum. The proposed structure is based on coplanar-waveguide-fed, modified wide slot etched in the ground plane. For generating CP waves, the coplanar ground planes are designed with slight asymmetry in both the horizontal and vertical directions. Furthermore, the ground...
-
Circularly Polarized Antenna Array design with the Potential of Gain-Size Trade-off and Omnidirectional Radiation for Millimeter-Wave Small Base Station Applications
PublicationThis paper presents the design and validation of a slot-patch-hybrid circularly polarized antenna array for 28 GHz millimeter (mm) wave (mm-wave) applications. The proposed design has a simple geometry that facilitates the fabrication process, which is otherwise a challenging task due to the sub-mm dimensions of the circuit in the mm-wave band. In the proposed structure, aperture-coupled series slot-fed array is utilized to excite...
-
High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams?
PublicationDespite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected...
-
Autonomous pick-and-place system based on multiple 3Dsensors and deep learning
PublicationGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Autonomous Perception and Grasp Generation Based on Multiple 3D Sensors and Deep Learning
PublicationGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Playback detection using machine learning with spectrogram features approach
PublicationThis paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...
-
How to Sort Them? A Network for LEGO Bricks Classification
PublicationLEGO bricks are highly popular due to the ability to build almost any type of creation. This is possible thanks to availability of multiple shapes and colors of the bricks. For the smooth build process the bricks need to properly sorted and arranged. In our work we aim at creating an automated LEGO bricks sorter. With over 3700 different LEGO parts bricks classification has to be done with deep neural networks. The question arises...
-
MobileNet family tailored for Raspberry Pi
PublicationWith the advances in systems-on-a-chip technologies, there is a growing demand to deploy intelligent vision systems on low-cost microcomputers. To address this challenge, much of the recent research has focused on reducing the model size and computational complexity of contemporary convolutional neural networks (CNNs). The state-of-the-art lightweight CNN is MobileNetV3. However, it was designed to achieve a good trade-off between...
-
Performance improvement of NN based RTLS by customization of NN structure - heuristic approach
PublicationThe purpose of this research is to improve performance of the Hybrid Scene Analysis – Neural Network indoor localization algorithm applied in Real-time Locating System, RTLS. A properly customized structure of Neural Network and training algorithms for specific operating environment will enhance the system’s performance in terms of localization accuracy and precision. Due to nonlinearity and model complexity, a heuristic analysis...
-
BETWEEN IDEA AND INTERPRETATION - DESIGN PROCESS AUGMENTATION
PublicationThe following paper investigates the idea of reducing the human digital intervention to a minimum during the advanced design process. Augmenting the outcome attributes beyond the designer's capabilities by computational design methods, data collection, data computing and digital fabrication, altogether imitating the human design process. The primary technical goal of the research was verification of restrictions and abilities used...
-
Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study
PublicationPlain weave composite is a long-lasting type of fabric composite that is stable enough when being handled. Open-hole composites have been widely used in industry, though they have weak structural performance and complex design processes. An extensive number of material/geometry parameters have been utilized for designing these composites, thereby an efficient computational tool is essential for that purpose. Different Machine Learning...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublicationThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
A comparative analysis of the effectiveness of corporate bankruptcy prediction models based on financial ratios: Evidence from Colombia, 2008 to 2015
PublicationLogit and discriminant analyses have been used for corporate bankruptcy prediction in several studies since the last century. In recent years there have been dozens of studies comparing the several models available, including the ones mentioned above and also probit, artificial neural networks, support vector machines, among others. For the first time for Colombia, this paper presents a comparative analysis of the effectiveness...
-
Soft Sensor Application in Identification of the Activated Sludge Bulking Considering the Technological and Economical Aspects of Smart Systems Functioning
PublicationThe paper presented the methodology for the construction of a soft sensor used for activated sludge bulking identification. Devising such solutions fits within the current trends and development of a smart system and infrastructure within smart cities. In order to optimize the selection of the data-mining method depending on the data collected within a wastewater treatment plant (WWTP), a number of methods were considered, including:...
-
Automatic Emotion Recognition in Children with Autism: A Systematic Literature Review
PublicationThe automatic emotion recognition domain brings new methods and technologies that might be used to enhance therapy of children with autism. The paper aims at the exploration of methods and tools used to recognize emotions in children. It presents a literature review study that was performed using a systematic approach and PRISMA methodology for reporting quantitative and qualitative results. Diverse observation channels and modalities...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublicationCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
Performance Analysis of the OpenCL Environment on Mobile Platforms
PublicationToday’s smartphones have more and more features that so far were only assigned to personal computers. Every year these devices are composed of better and more efficient components. Everything indicates that modern smartphones are replacing ordinary computers in various activities. High computing power is required for tasks such as image processing, speech recognition and object detection. This paper analyses the performance of...
-
Runge-Kutta bicharacteristic methods for first order partial functional di- fferential equations
PublicationW pracy prezentujemy nową klasę metod numerycznych dla równań różniczkowo-funkcyjnych. Są to metody bicharakterystyk Rungego-Kutty. Ponadto porównuje-my wprowadzone metody z metodami klasycznymi.
-
Badanie i analiza efektywności alokacji strumieni danych w heterogenicznej sieci WBAN
PublicationW niniejszej dysertacji doktorskiej poddano dyskusji efektywność alokacji strumieni danych w heterogenicznej radiowej sieci WBAN (Wireless Body Area Networks). Biorąc pod uwagę dynamiczny rozwój nowoczesnych sieci radiokomunikacyjnych piątej generacji (5G), którego część stanowią radiowe sieci działające w obrębie ciała człowieka, bardzo ważnym aspektem są metody maksymalizujące wykorzystanie dostępnych zasobów czasowo –częstotliwościowych...
-
Impact of R/X ratio of distribution network on selection and control of energy storage units
PublicationThe interest in energy storage is still increasing. Energy storage units are installed in high voltage networks, medium voltage networks and low voltage distribution networks as well. These units are often used to improve power quality. One of the criteria for improving power quality is reducing voltage deviations. Depending on the type of network and specifying its R/X ratio, this criterion can be fulfilled by control of active...
-
Diagnostyka uszkodzeń analogowych układów elektronicznych z zastosowaniem specjalizowanej sieci neuronowej
PublicationNa tle trendów rozwojowych diagnostyki analogowych układów elektronicznych AEC (Analog Electronic Circuits), przedstawiono nową metodę diagnostyki uszkodzeń parametrycznych układów analogowych, ze specjalizowanym klasyfikatorem neuronowym, o zwiększonej odporności na tolerancje elementów układu i niepewności pomiaru. Zastosowano specjalizowaną sieć neuronową z dwucentrowymi funkcjami bazowymi TCRBF (Two-center Radial Basis Function),...
-
A new multi-process collaborative architecture for time series classification
PublicationTime series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head convolutional neural networks and capsule mechanism. In addition to the discovery...
-
The Influence of Selecting Regions from Endoscopic Video Frames on The Efficiency of Large Bowel Disease Recognition Algorithms
PublicationThe article presents our research in the field of the automatic diagnosis of large intestine diseases on endoscopic video. It focuses on the methods of selecting regions of interest from endoscopic video frames for further analysis by specialized disease recognition algorithms. Four methods of selecting regions of interest have been discussed: a. trivial, b. with the deletion of characteristic, endoscope specific additions to the...
-
Online sound restoration system for digital library applications
PublicationAudio signal processing algorithms were introduced to the new online non-commercial service for audio restoration intended to enhance the content of digitized audio repositories. Missing or distorted audio samples are predicted using neural networks and a specific implementation of the Jannsen interpolation method based on the autoregressive model (AR) combined with the iterative restoring of missing signal samples. Since the distortion...
-
Computed aided system for separation and classification of the abnormal erythrocytes in human blood
PublicationThe human peripheral blood consists of cells (red cells, white cells, and platelets) suspended in plasma. In the following research the team assessed an influence of nanodiamond particles on blood elements over various periods of time. The material used in the study consisted of samples taken from ten healthy humans of various age, different blood types and both sexes. The markings were leaded by adding to the blood unmodified...
-
Data governance: Organizing data for trustworthy Artificial Intelligence
PublicationThe rise of Big, Open and Linked Data (BOLD) enables Big Data Algorithmic Systems (BDAS) which are often based on machine learning, neural networks and other forms of Artificial Intelligence (AI). As such systems are increasingly requested to make decisions that are consequential to individuals, communities and society at large, their failures cannot be tolerated, and they are subject to stringent regulatory and ethical requirements....
-
Prognostic and diagnostic capabilities of OOBN in assessing investment risk of complex construction projects
PublicationModelling decision problems using Bayesian networks is extremely valuable especially in case of issues related to uncertainty; it is also very helpful in constructing and understanding visual representation of the elements and their relations. This approach facilitates subsequent application of Bayesian networks, however there can be situations where using simple Bayesian networks is impractical or even ineffective. The aim of...
-
A Test-Bed Analysis of Simultaneous PMIPv6 Handover in 802.11 WLANs Environment
PublicationProviding mobility in access networks is a challenge that we have to deal with. Due to networks’ convergence and migration to all-IP networks, mobility management at the network layer is required. However, there is a need for cooperation mechanisms between the network layer and lower layers to support multimedia services and make handover more efficient. This paper presents experimental research on simultaneous handover performance...
-
Silent Signals The Covert Network Shaping the Future
PublicationSilent Signals The Covert Network Shaping the Future In a world dominated by information flow and rapid technological advancements, the existence of hidden networks and unseen influences has never been more relevant. "Silent Signals: The Covert Network Shaping the Future" delves deep into the mysterious and often opaque world of covert communication networks. This influential work sheds light on the silent...
-
Future research directions in design of reliable communication systems
PublicationIn this position paper on reliable networks, we discuss new trends in the design of reliable communication systems. We focus on a wide range of research directions including protection against software failures as well as failures of communication systems equipment. In particular, we outline future research trends in software failure mitigation, reliability of wireless communications, robust optimization and network design, multilevel...
-
Problems of modelling toxic compounds emitted by a marine internal combustion engine for the evaluation of its structure parameters
PublicationThe paper presents the possibility of using an analytical study of the engine exhaust ignition to evaluate the technical condition of the selected components. Software tools available for the analysis of experimental data commonly use multiple regression model that allows the study of the effects and iterations between model input quantities and one output variable. The use of multi-equation models gives a lot of freedom in the...
-
Damage Detection Strategies in Structural Health Monitoring of Overhead Power Transmission System
PublicationOverhead power transmission lines, their supporting towers, insulators and other elements create a highly distributed system that is vulnerable to damage. Typical damage scenarios cover cracking of foundation, breakage of insulators, loosening of rivets, as well as cracking and breakage of lines. Such scenarios may result from various factors: groundings, lightning strikes, floods, earthquakes, aeolian vibrations, conductors galloping,...
-
Investigating Feature Spaces for Isolated Word Recognition
PublicationMuch attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...
-
How Can We Identify Electrophysiological iEEG Activities Associated with Cognitive Functions?
PublicationElectrophysiological activities of the brain are engaged in its various functions and give rise to a wide spectrum of low and high frequency oscillations in the intracranial EEG (iEEG) signals, commonly known as the brain waves. The iEEG spectral activities are distributed across networks of cortical and subcortical areas arranged into hierarchical processing streams. It remains a major challenge to identify these activities in...