Filters
total: 2565
filtered: 1935
-
Catalog
Chosen catalog filters
displaying 1000 best results Help
Search results for: DISTRIBUTED MACHINE LEARNING
-
Data-driven, probabilistic model for attainable speed for ships approaching Gdańsk harbour
PublicationThe growing demand for maritime transportation leads to increased traffic in ports. From this arises the need to observe the consequences of the specific speed ships reach when approaching seaports. However, usually the analyzed cases refer only to the statistical evaluation of the studied phenomenon or to the empirical modelling, ignoring the mutual influence of variables such as ship type, length or weather conditions. In this...
-
Optymalizacja zasobów chmury obliczeniowej z wykorzystaniem inteligentnych agentów w zdalnym nauczaniu
PublicationRozprawa dotyczy optymalizacji zasobów chmury obliczeniowej, w której zastosowano inteligentne agenty w zdalnym nauczaniu. Zagadnienie jest istotne w edukacji, gdzie wykorzystuje się nowoczesne technologie, takie jak Internet Rzeczy, rozszerzoną i wirtualną rzeczywistość oraz deep learning w środowisku chmury obliczeniowej. Zagadnienie jest istotne również w sytuacji, gdy pandemia wymusza stosowanie zdalnego nauczania na dużą skalę...
-
IFE: NN-aided Instantaneous Pitch Estimation
PublicationPitch estimation is still an open issue in contemporary signal processing research. Nowadays, growing momentum of machine learning techniques application in the data-driven society allows for tackling this problem from a new perspective. This work leverages such an opportunity to propose a refined Instantaneous Frequency and power based pitch Estimator method called IFE. It incorporates deep neural network based pitch estimation...
-
Method of selecting the LS-SVM algorithm parameters in gas detection process
PublicationIn this paper we showed the method of resistive gas sensors data processing. The UV irradiation and temperature modulation was applied to improve gas sensors’ selectivity and sensitivity. Noise voltage across the sensor’s terminals (proportional to its resistance fluctuations) was recorded to estimate power spectral density. This function was an input data vector for LS-SVM (least squares – support vector machine) algorithm, which...
-
Monitoring the BTEX Volatiles during 3D Printing with Acrylonitrile Butadiene Styrene (ABS) Using Electronic Nose and Proton Transfer Reaction Mass Spectrometry
PublicationWe describe a concept study in which the changes of concentration of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and styrene within a 3D printer enclosure during printing with different acrylonitrile butadiene styrene (ABS) filaments were monitored in real-time using a proton transfer reaction mass spectrometer and an electronic nose. The quantitative data on the concentration of the BTEX compounds, in particular...
-
Comparing the Effectiveness of ANNs and SVMs in Forecasting the Impact of Traffic-Induced Vibrations on Building
PublicationTraffic - induced vibrations may cause damage to structural elements and may even lead to structural collapse. The aim of the article is to compare the effectiveness of algorithms in forecasting the impact of vibrations on buildings using the Machine Learning (ML) methods. The paper presents two alternative approaches by using Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). Factors that may affect traffic-induced...
-
INFLUENCE OF DATA NORMALIZATION ON THE EFFECTIVENESS OF NEURAL NETWORKS APPLIED TO CLASSIFICATION OF PAVEMENT CONDITIONS – CASE STUDY
PublicationIn recent years automatic classification employing machine learning seems to be in high demand for tele-informatic-based solutions. An example of such solutions are intelligent transportation systems (ITS), in which various factors are taken into account. The subject of the study presented is the impact of data pre-processing and normalization on the accuracy and training effectiveness of artificial neural networks in the case...
-
Exploring Cause-and-Effect Relationships Between Public Company Press Releases and Their Stock Prices
PublicationThe aim of the work is to design and implement a method of exploring the cause-and-effect relationships between company announcements and the stock prices on NASDAQ stock exchange, followed by a brief discussion. For this purpose, it was necessary to download the stock quotes of selected companies from the NASDAQ market from public web sources. Additionally, media messages related to selected companies had to be downloaded, and...
-
Technique for reducing erosion in large-scale circulating fluidized bed units
PublicationThis paper presents a methodology, implemented for a real industrial-scale circulating fluidized bed boiler, to mitigate the risk of heating surfaces exposed to an intensive particle erosion process. For this purpose, a machine learning algorithm was developed to support the boiler reliability management process. Having a tool that can help mitigate the risk of uncontrolled power unit failure without expensive and technically complex...
-
Listening to Live Music: Life beyond Music Recommendation Systems
PublicationThis paper presents first a short review on music recommendation systems based on social collaborative filtering. A dictionary of terms related to music recommendation systems, such as music information retrieval (MIR), Query-by-Example (QBE), Query-by-Category (QBC), music content, music annotating, music tagging, bridging the semantic gap in music domain, etc. is introduced. Bases of music recommender systems are shortly presented,...
-
Multiscalar Model Based Control Systems for AC Machines
PublicationContents of the Chapter: Nonlinear transformations and feedback linearization. Models of the squirrel cage induction machine: Vector model of the squirrel cage induction machine. Multiscalar models of the squirrel cage induction machine.Feedback linearization of multiscalar models of the induction motor.Models of the double fed induction machine: Vector model of the double fed induction machine. Multiscalar model of the...
-
News that Moves the Market: DSEX-News Dataset for Forecasting DSE Using BERT
PublicationStock market is a complex and dynamic industry that has always presented challenges for stakeholders and investors due to its unpredictable nature. This unpredictability motivates the need for more accurate prediction models. Traditional prediction models have limitations in handling the dynamic nature of the stock market. Additionally, previous methods have used less relevant data, leading to suboptimal performance. This study...
-
Pedestrian detection in low-resolution thermal images
PublicationOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...
-
Detection of Alzheimer's disease using Otsu thresholding with tunicate swarm algorithm and deep belief network
PublicationIntroduction: Alzheimer’s Disease (AD) is a degenerative brain disorder characterized by cognitive and memory dysfunctions. The early detection of AD is necessary to reduce the mortality rate through slowing down its progression. The prevention and detection of AD is the emerging research topic for many researchers. The structural Magnetic Resonance Imaging (sMRI) is an extensively used imaging technique in detection of AD, because...
-
Experimental and Theoretical Insights into the Intermolecular Interactions in Saturated Systems of Dapsone in Conventional and Deep Eutectic Solvents
PublicationSolubility is not only a crucial physicochemical property for laboratory practice but also provides valuable insight into the mechanism of saturated system organization, as a measure of the interplay between various intermolecular interactions. The importance of these data cannot be overstated, particularly when dealing with active pharmaceutical ingredients (APIs), such as dapsone. It is a commonly used anti-inflammatory and...
-
Architecture and implementation of distributed data storage using Web Services, CORBA i PVM. W: Proceedings. PPAM 2003. Parallel Processing and Applied Mathematics. Fifth International Conference. Częstochowa, 7-10 September 2003. Architektura i implementacja rozproszonego zarządzania danymi używając systemów Web Services, CORBA i PVN.
PublicationProponujemy architekturę i jej implementację PVMWeb Cluster I/O przeznaczoną do rozproszonego zarządzania danymi. Dane zapisywane są w systemie Web Services z geograficznie odległych klientów lub przez wywołania CORBA z wewnątrz danego klastra co oferuje lepsze osiągi.
-
BeesyBees: A mobile agent-based middleware for a reliable and secure execution of service-based workflow applications in BeesyCluster
PublicationIntegrating distributed services into workflows comes with its own set of challenges, including security, coordination, fault tolerance and optimisation of execution time. This paper presents an architecture and implementation - nicknamed BeesyBees - that allows distributed execution of workflow applications in BeesyCluster using agents. BeesyCluster is a middleware that allows users to access distributed resources as well as publish...
-
Sound engineering as our commitment to its creators in Poland
PublicationSound engineering is an interdisciplinary and rapidly expanding domain. It covers many aspects, such as sound perception, studio and sound mastering technology, music information retrieval including content-based search systems and automatic music transcription frameworks, sound synthesis, sound restoration, electroacoustics, and other ones constituting multimedia technology. Moreover, machine learning methods applied to the topics...
-
Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models
PublicationThis work addresses artificial-intelligence-based buried object characterization using 3-D full-wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different positions. The main contributions of this work are (i) development of a fast and accurate data driven surrogate modeling...
-
Modelling and analysis of beam/bar structure by application of bond graphs
PublicationThe paper presents an uniform, port-based approach to modelling of beam/bar systems (trusses). Port-based model of such distributed parameter system has been defined by application of the bond graph methodology and the distributed transfer function method (DTFM). The proposed method of modelling enables to formulate input data for computer analysis by application of the DTFM. The constructed computational package enables the frequency...
-
Intracranial hemorrhage detection in 3D computed tomography images using a bi-directional long short-term memory network-based modified genetic algorithm
PublicationIntroduction: Intracranial hemorrhage detection in 3D Computed Tomography (CT) brain images has gained more attention in the research community. The major issue to deal with the 3D CT brain images is scarce and hard to obtain the labelled data with better recognition results. Methods: To overcome the aforementioned problem, a new model has been implemented in this research manuscript. After acquiring the images from the Radiological...
-
Computer-Aided Detection of Hypertensive Retinopathy Using Depth-Wise Separable CNN
PublicationHypertensive retinopathy (HR) is a retinal disorder, linked to high blood pressure. The incidence of HR-eye illness is directly related to the severity and duration of hypertension. It is critical to identify and analyze HR at an early stage to avoid blindness. There are presently only a few computer-aided systems (CADx) designed to recognize HR. Instead, those systems concentrated on collecting features from many retinopathy-related...
-
VARIABLE KINEMATICS OF HONING PROCESS – INFLUENCE ON MACHINED WORKPIECE
PublicationSurface quality of holes plays an important role in machine manufacturing industry especially in the production of car engines and hydraulic cylinders. Investigations of honing process were carried out by 6 years on horizontal CNC Sunnen’s honing machine HTH 4000S, on vertical conventional honing machine WMW’s SZS 200 and on CNC milling machine of Haas VF 3SS with equipment of Honingtec for honing. Measurements of cylindricity...
-
Voice command recognition using hybrid genetic algorithm
PublicationAbstract: Speech recognition is a process of converting the acoustic signal into a set of words, whereas voice command recognition consists in the correct identification of voice commands, usually single words. Voice command recognition systems are widely used in the military, control systems, electronic devices, such as cellular phones, or by people with disabilities (e.g., for controlling a wheelchair or operating a computer...
-
Zastosowanie metody studium przypadku w kształceniu menedżerów
PublicationKształcenie z wykorzystaniem metod rozwiązywania problemów (problem-based learning) staje się coraz bardziej popularne na wszystkich poziomach kształcenia, również w edukacji biznesowej. Przykładem takiej metody jest studium przypadku (case study). Metoda studium przypadku pozwala na rozwijanie umiejętności i kompetencji wykorzystywanych przez menedżerów w ich pracy, np. umiejętności syntezy, identyfikacji problemów, czy podejmowania...
-
Drawing maps with advice
PublicationRozważamy następujący problem obliczeniowy. Agent zostaje umieszczony w wierzchołku nieznanego mu grafu. Wierzchołki grafu są nierozróżnialne, natomiast krawędzie posiadają numery portów. Zadaniem agenta jest wyznaczenie mapy, tzn. obliczenie izomorficznej kopii grafu, lub obliczenie dowolnego drzewa spinającego grafu. Bez dodatkowej informacji zadań tych nie można wykonać. W artykule wyznaczamy oszacowania na minimalną liczbę...
-
Investigating Noise Interference on Speech Towards Applying the Lombard Effect Automatically
PublicationThe aim of this study is two-fold. First, we perform a series of experiments to examine the interference of different noises on speech processing. For that purpose, we concentrate on the Lombard effect, an involuntary tendency to raise speech level in the presence of background noise. Then, we apply this knowledge to detecting speech with the Lombard effect. This is for preparing a dataset for training a machine learning-based...
-
Model of Volunteer Based Systems.
PublicationThere are two main approaches to processing tasks requiring high amounts of computational power. One approach is using clusters of mostly identical hardware, placed in dedicated locations. The other approach is outsourcing computing resources from large numbers of volunteers connected to the Internet. This chapter attempts to formulate a mathematical model of the volunteer based approach to distributed computations and apply it...
-
Induction machine model for current diagnostics of bearings. W: [CD-ROM]Proceedings and our Portrait. 48 Internationales Wissenschaftliches Kollo- quium. Ilmenau, 22.-25.09.2003. Ilmenau: Tech. Univ. Ilmenau**2003 s. [1-9] 8 rys. Model maszyny indukcyjnej dla prądowej diagnostyki łożysk.
PublicationPojawienie się określonych typów uszkodzeń w silniku jest źródłem odkształ-cenia tego prądu. Poddając przebieg prądu analizie widmowej obserwuje sięszereg składowych, które związane są z określonymi typami uszkodzeń. Referatprezentuje rezultaty badań modelowych i eksperymentalnych. Badania przepro-wadzono na silniku 1,1 kW czterobiegunowym. Zaprezentowany model pozwala za-równo na wprowadzanie wibracji wirnika jak ekscentryczności...
-
Do mistakes acceptance foster innovation? Polish and US cross-country study of tacit knowledge sharing in IT
PublicationAbstract Purpose – This study aims to understand and compare how the mechanism of innovative processes in the information technology (IT) industry – the most innovative industry worldwide – is shaped in Poland and the USA in terms of tacit knowledge awareness and sharing driven by a culture of knowledge and learning, composed of a learning climate and mistake acceptance. Design/methodology/approach – Study samples were drawn from...
-
Double Bias of Mistakes: Essence, Consequences, and Measurement Method
PublicationThere is no learning without mistakes. However, there is a clash between‘positive attitudes and beliefs’regarding learning processes and the ‘negative attitudes and beliefs’towardthese being accompanied bymistakes. Thisclash exposesa cognitive bias towardmistakesthat might block personal and organizational learning. This study presents an advanced measurement method to assess thebias of mistakes. The essence of it is the...
-
Pharmaceutical care in the neonatal intensive care unit: Perspectives of Polish medical and pharmacy students
Publication -
Mutual recognition of certification systems: The case of SERMO and ACLES
Publication -
Sensorless Control of Polyphase Induction Machines
PublicationThe basics of transformations of polyphase systems into orthogonal systems are explained. Vector models of induction machines in orthogonal planes are analysed and multiscalar models for rotor flux and main flux together with stator current are presented. A speed observer based on an extended model of the induction machine for selected variables is applied in the control system for the induction machine. On the basis of the model...
-
Identification of category associations using a multilabel classifier
PublicationDescription of the data using categories allows one to describe it on a higher abstraction level. In this way, we can operate on aggregated groups of the information, allowing one to see relationships that do not appear explicit when we analyze the individual objects separately. In this paper we present automatic identification of the associations between categories used for organization of the textual data. As experimental data...
-
Automatic classification and mapping of the seabed using airborne LiDAR bathymetry
PublicationShallow coastal areas are among the most inhabited areas and are valuable for biodiversity, recreation and the economy. Due to climate change and sea level rise, sustainable management of coastal areas involves extensive exploration, monitoring, and protection. Current high-resolution remote sensing methods for monitoring these areas include bathymetric LiDAR. Therefore, this study presents a novel methodological approach to assess...
-
Sensing Direction of Human Motion Using Single-Input-Single-Output (SISO) Channel Model and Neural Networks
PublicationObject detection Through-the-Walls enables localization and identification of hidden objects behind the walls. While numerous studies have exploited Channel State Information of Multiple Input Multiple Output (MIMO) WiFi and radar devices in association with Artificial Intelligence based algorithms (AI) to detect and localize objects behind walls, this study proposes a novel non-invasive Through-the-Walls human motion direction...
-
A Review of Emotion Recognition Methods Based on Data Acquired via Smartphone Sensors
PublicationIn recent years, emotion recognition algorithms have achieved high efficiency, allowing the development of various affective and affect-aware applications. This advancement has taken place mainly in the environment of personal computers offering the appropriate hardware and sufficient power to process complex data from video, audio, and other channels. However, the increase in computing and communication capabilities of smartphones,...
-
Path-based methods on categorical structures for conceptual representation of wikipedia articles
PublicationMachine learning algorithms applied to text categorization mostly employ the Bag of Words (BoW) representation to describe the content of the documents. This method has been successfully used in many applications, but it is known to have several limitations. One way of improving text representation is usage of Wikipedia as the lexical knowledge base – an approach that has already shown promising results in many research studies....
-
Sounding Mechanism of a Flue Organ Pipe—A Multi-Sensor Measurement Approach
PublicationThis work presents an approach that integrates the results of measuring, analyzing, and modeling air flow phenomena driven by pressurized air in a flue organ pipe. The investigation concerns a Bourdon organ pipe. Measurements are performed in an anechoic chamber using the Cartesian robot equipped with a 3D acoustic vector sensor (AVS) that acquires both acoustic pressure and air particle velocity. Also, a high-speed camera is employed...
-
Will NILM Technology Replace Multi-Meter Telemetry Systems for Monitoring Electricity Consumption?
PublicationThe estimation of electric power utilization, its baseload, and its heating, light, ventilation, and air-conditioning (HVAC) power component, which represents a very large portion of electricity usage in commercial facilities, are important for energy consumption controls and planning. Non-intrusive load monitoring (NILM) is the analytical method used to monitor the energy and disaggregate total electrical usage into appliance-related...
-
Data on LEGO sets release dates and worldwide retail prices combined with aftermarket transaction prices in Poland between June 2018 and June 2023
PublicationThe dataset contains LEGO bricks sets item count and pricing history for AI-based set pricing prediction. The data spans the timeframe from June 2018 to June 2023. The data was obtained from three sources: Brickset.com (LEGO sets retail prices, release dates, and IDs), Lego.com official web page (ID number of each set that was released by Lego, its retail prices, the current status of the set) and promoklocki.pl web page (the retail...
-
Automatic labeling of traffic sound recordings using autoencoder-derived features
PublicationAn approach to detection of events occurring in road traffic using autoencoders is presented. Extensions of existing algorithms of acoustic road events detection employing Mel Frequency Cepstral Coefficients combined with classifiers based on k nearest neighbors, Support Vector Machines, and random forests are used. In our research, the acoustic signal gathered from the microphone placed near the road is split into frames and converted...
-
Computer-assisted pronunciation training—Speech synthesis is almost all you need
PublicationThe research community has long studied computer-assisted pronunciation training (CAPT) methods in non-native speech. Researchers focused on studying various model architectures, such as Bayesian networks and deep learning methods, as well as on the analysis of different representations of the speech signal. Despite significant progress in recent years, existing CAPT methods are not able to detect pronunciation errors with high...
-
Empirical Analysis of Forest Penalizing Attribute and Its Enhanced Variations for Android Malware Detection
PublicationAs a result of the rapid advancement of mobile and internet technology, a plethora of new mobile security risks has recently emerged. Many techniques have been developed to address the risks associated with Android malware. The most extensively used method for identifying Android malware is signature-based detection. The drawback of this method, however, is that it is unable to detect unknown malware. As a consequence of this problem,...
-
A Human Behaviour Model Agent for Testing of Voluntary Computing Systems
PublicationPaper presents a design and performance of a voluntary-based distributed computing system testing agent, implementing a human behaviour model. The agent, nicknamed iRobot, was designed and implemented to enable controlled, large scale testing of core algorithms of Comcute - a new voluntary distributed computing platform complementary to BOINC. The main agent design goals were: emulation of human behaviour when browsing web pages,...
-
Energy Loss Coefficients ki in a Displacement Pump and Hydraulic Motor used in Hydrostatic Drives
PublicationThe article aims at defining and analysing the energy loss coefficients in design solutions of rotating displacement machines, with a piston machine as an example. The energy losses observed in these machines include mechanical loss, volumetric loss, and pressure loss. The scale and relations between these losses in different machines depend on machine design and manufacturing quality, and on operating parameters. The operating...
-
A model, design, and implementation of an efficient multithreaded workflow execution engine with data streaming, caching, and storage constraints
PublicationThe paper proposes a model, design, and implementation of an efficient multithreaded engine for execution of distributed service-based workflows with data streaming defined on a per task basis. The implementation takes into account capacity constraints of the servers on which services are installed and the workflow data footprint if needed. Furthermore, it also considers storage space of the workflow execution engine and its cost....
-
Control of the wind turbine generator
PublicationWind power system consists of two main parts: wind turbine and electrical generator. Wind turbine converts the energy of the flowing air into mechanical energy, next generator converts this energy into electrical energy that is sent to the power system. These two processes should be realized with maximum efficiency and the following requirements for the control system can be formulated: opti-mal wind power conversion, compensation...
-
The Design Development of the Sliding Table Saw Towards Improving Its Dynamic Properties
PublicationCutting wood with circular saws is a popular machining operation in the woodworking and furniture industries. In the latter sliding table saws (panel saws) are commonly used for cutting of medium density fiberboards (MDF), high density fiberboards (HDF), laminate veneer lumber (LVL), plywood and chipboards of different structures. The most demanded requirements for machine tools are accuracy and precision, which mainly depend on...