Filters
total: 2256
filtered: 1808
-
Catalog
Chosen catalog filters
displaying 1000 best results Help
Search results for: MEN MACHINE INTERACTION
-
Effect of Whole-Body Cryostimulation on Serum Mediators of Inflammation and Serum Muscle Enzyme in Healthy Men
Publication -
Machine learning-based prediction of preplaced aggregate concrete characteristics
PublicationPreplaced-Aggregate Concrete (PAC) is a type of preplaced concrete where coarse aggregate is placed in the mold and a Portland cement-sand grout with admixtures is injected to fill the voids. Due to the complex nature of PAC, many studies were conducted to determine the effects of admixtures and the compressive and tensile strengths of PAC. Considering that a prediction tool is needed to estimate the compressive and tensile...
-
Machine learning-based prediction of preplaced aggregate concrete characteristics
PublicationPreplaced-Aggregate Concrete (PAC) is a type of preplaced concrete where coarse aggregate is placed in the mold and a Portland cement-sand grout with admixtures is injected to fill the voids. Due to the complex nature of PAC, many studies were conducted to determine the effects of admixtures and the compressive and tensile strengths of PAC. Considering that a prediction tool is needed to estimate the compressive and tensile strengths...
-
Platelet RNA Sequencing Data Through the Lens of Machine Learning
PublicationLiquid biopsies offer minimally invasive diagnosis and monitoring of cancer disease. This biosource is often analyzed using sequencing, which generates highly complex data that can be used using machine learning tools. Nevertheless, validating the clinical applications of such methods is challenging. It requires: (a) using data from many patients; (b) verifying potential bias concerning sample collection; and (c) adding interpretability...
-
Interaction of Acoustic and Thermal Modes in the Gas with Nonequilibrium Chemical Reactions: Possibilities of Acoustic Cooling
PublicationNonlinear generation of thermal mode during propagation of dominative sound in a chemically reacting gas is considered. The dynamic equation of excess temperature associated with the thermal mode is derived. It is instantaneous and includes quadratic nonlinear acoustic source reflecting the nonlinear character of interaction between acoustic and non-acoustic types of gas motion. Both periodic and aperiodic sound may be considered...
-
DNAffinity: a machine-learning approach to predict DNA binding affinities of transcription factors
PublicationWe present a physics-based machine learning approach to predict in vitro transcription factor binding affinities from structural and mechanical DNA properties directly derived from atomistic molecular dynamics simulations. The method is able to predict affinities obtained with techniques as different as uPBM, gcPBM and HT-SELEX with an excellent performance, much better than existing algorithms. Due to its nature, the method can...
-
Soil-structure interaction effects on modal parameters of office buildings with different number of stories
PublicationThe paper summarizes the results of a numerical investigation designed to study the soil-structure interaction effects on modal parameters of three office buildings. The reinforced-concrete 4-storey, 8-storey, and 12-storey office buildings, each with additional two levels of embedded basements, represent low, medium, and high-rise structures, respectively. In order to conduct this research, detailed finite-element structure models...
-
Application of sliding switching functions in backstepping based speed observer of induction machine
PublicationThe paper presents an analysis of the speed observer which is based on the backstepping and sliding mode approach. The speed observer structure is based on the extended mathematical model of an induction machine. The observer structure is based on the measured phase stator currents and transformed to ( αβ ) coordinate system. The stator voltage vector components are treated as known values. Additionally, such an observer structure...
-
Sphere Drive and Control System for Haptic Interaction With Physical, Virtual, and Augmented Reality
PublicationA system for haptic interaction with physical, virtual, and augmented realities, founded on drive and measurement elements (DMEs), is considered. The system consists of eight DME rolls equipped with linear actuators, able to measure their angular velocity, drive the sphere, and adjust downforce (pressing the roll against the sphere). Two modeling issues are addressed. Special effort is put in to compensate for various technical...
-
Forewarned Is Forearmed: Machine Learning Algorithms for the Prediction of Catheter-Induced Coronary and Aortic Injuries
PublicationCatheter-induced dissections (CID) of coronary arteries and/or the aorta are among the most dangerous complications of percutaneous coronary procedures, yet the data on their risk factors are anecdotal. Logistic regression and five more advanced machine learning techniques were applied to determine the most significant predictors of dissection. Model performance comparison and feature importance ranking were evaluated. We identified...
-
A novel hybrid adaptive framework for support vector machine-based reliability analysis: A comparative study
PublicationThis study presents an innovative hybrid Adaptive Support Vector Machine - Monte Carlo Simulation (ASVM-MCS) framework for reliability analysis in complex engineering structures. These structures often involve highly nonlinear implicit functions, making traditional gradient-based first or second order reliability algorithms and Monte Carlo Simulation (MCS) time-consuming. The application of surrogate models has proven effective...
-
Assessment Of the Relevance of Best Practices in The Development of Medical R&D Projects Based on Machine Learning
PublicationMachine learning has emerged as a fundamental tool for numerous endeavors within health informatics, bioinformatics, and medicine. However, novices among biomedical researchers and IT developers frequently lack the requisite experience to effectively execute a machine learning project, thereby increasing the likelihood of adopting erroneous practices that may result in common pitfalls or overly optimistic predictions. The paper...
-
Generalized Taylor formula and shell structures for the analysis of the interaction between geosythetics and engineering structures of transportation lines
PublicationThe analysis of the interaction between geosynthetics and engineering structures (e.g. railroad bed, soil foundation, pipeline) assumes that the geosynthetic form elastic membranes or shell laid on different types of foundations. The mathematical description of that problems in continuous domain employs Laplace operator Δ or d’Alembert operator □. In this paper we demonstrate the analysis based on generalize Taylor formula, and...
-
Machine-Learning-Powered EM-Based Framework for Efficient and Reliable Design of Low Scattering Metasurfaces
PublicationPopularity of metasurfaces has been continuously growing due to their attractive properties including the ability to effectively manipulate electromagnetic (EM) waves. Metasurfaces comprise optimized geometries of unit cells arranged as a periodic lattice to obtain a desired EM response. One of their emerging application areas is the stealth technology, in particular, realization of radar cross section (RCS) reduction. Despite...
-
Rotor flux and EEMF observer for interior permanent magnet synchronous machine
PublicationIn recent years, the use of the interior permanent magnet synchronous machine (IPMSM) in various applications has grown significantly due to numerous benefits. Sensors are used to achieve high efficiency and good dynamic response in IPMSM drives but due to their high cost and reduced overall size of the system, sensorless control techniques are preferred. Non-sinusoidal distribution of rotor flux and slot harmonics are present...
-
RSS-Based DoA Estimation for ESPAR Antennas Using Support Vector Machine
PublicationIn this letter, it is shown how direction-of-arrival (DoA) estimation for electronically steerable parasitic array radiator (ESPAR) antennas, which are designed to be integrated within wireless sensor network nodes, can be improved by applying support vector classification approach to received signal strength (RSS) values recorded at an antenna's output port. The proposed method relies on ESPAR antenna's radiation patterns measured...
-
Spin and Orbital Effects on Asymmetric Exchange Interaction in Polar Magnets: M(IO3)2 (M = Cu and Mn)
PublicationMagnetic polar materials feature an astonishing range of physical properties, such as magnetoelectric coupling, chiral spin textures, and related new spin topology physics. This is primarily attributable to their lack of space inversion symmetry in conjunction with unpaired electrons, potentially facilitating an asymmetric Dzyaloshinskii–Moriya (DM) exchange interaction supported by spin–orbital and electron–lattice coupling. However,...
-
Interaction with medical data using QR-codes
PublicationBar-codes and QR-codes (Quick Response ) are often used in healthcare. In this paper an application of QR-codes to exchange of laboratory results is presented. The secure data exchange is proposed between a laboratory and a patient and between a patient and Electronic Health Records. Advanced Encryption Standard was used to provide security of data encapsulated within a QR-code. The experimental setup, named labSeq is described....
-
The lubricant-coating interaction in rolling and sliding contacts
Publication -
Numerical modeling of wave-seabed-structure interaction.
PublicationPraca doktorska przedstawia propozycję nowoczesnego rozwiązania obciążeń hydraulicznych przy uwzględnieniu nieliniowych oddziaływań pomiędzy falą wodną, przepuszczalnym dnem i porowatą konstrukcją morską. Nabrzeże pionowe, falochron podwodny i falochron kompozytowy były obiektem eksperymentów numerycznych, których wyniki były weryfikowane przy użyciu wyników laboratoryjnych (niszczących i nieniszczących). Krótki przegląd bieżącej...
-
The potential interaction of environmental pollutants and circadian rhythm regulations that may cause leukemia
PublicationTumor suppressor genes are highly affected during the development of leukemia, including circadian clock genes. Circadian rhythms constitute an evolutionary molecular machinery involving many genes, such as BMAL1, CLOCK, CRY1, CRY2, PER1, PER2, REV-ERBa, and RORA, for tracking time and optimizing daily life during day-night cycles and seasonal changes. For circulating blood cells many of these genes coordinate their proliferation,...
-
The methodology of design of axial clearances compensation unit in hydraulic satellite displacement machine and their experimental verification
PublicationA new methodology of calculating the dimensions of the axial clearance compensation unit in the hydraulic satellite displacement machine is described in this paper. The methods of shaping the compensation unit were also proposed and described. These methods were used to calculate the geometrical dimensions of the compensation field in an innovative prototype of a satellite hydraulic motor. This motor is characterized by the fact...
-
A study on the interaction of rhodamine B with methylthioadenosine phosphorylase protein sourced from an Antarctic soil metagenomic library.
PublicationThe presented study examines the phenomenon of the fluorescence under UV light excitation (312 nm) of E. coli cells expressing a novel metagenomic-derived putative methylthioadenosine phosphorylase gene, called rsfp, grown on LB agar supplemented with a fluorescent dye rhodamine B. For this purpose, an rsfp gene was cloned and expressed in an LMG194 E. coli strain using an arabinose promoter. The resulting RSFP protein was purified...
-
Simulations CAE of wood pellet machine
Publication -
Explainable machine learning for diffraction patterns
PublicationSerial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...
-
Experimental verification of MWO bearing machine
PublicationPrzedstawiono wyniki weryfikacji doświadczalnej nowego stanowiska przeznaczonego do badań wytrzymałości zmęczeniowej warstwy powierzchniowej łożysk ślizgowych. Badano dwu- i trójwarstwowe cienkościenne panwie ślizgowe. Warstwa nośna wykonana była ze stopu CuPb30. W wariancie trójwarstwowym występowała powłoka ze stopu PbSnCu. Przedstawiono przykłady zaobserwowanych pęknięć zmęczeniowych. Maszyna MWO okazała się w pełni przydatna...
-
Modeling lignin extraction with ionic liquids using machine learning approach
PublicationLignin, next to cellulose, is the second most common natural biopolymer on Earth, containing a third of the organic carbon in the biosphere. For many years, lignin was perceived as waste when obtaining cellulose and hemicellulose and used as a biofuel for the production of bioenergy. However, recently, lignin has been considered a renewable raw material for the production of chemicals and materials to replace petrochemical resources....
-
Numerical Study on Seismic Response of a High-Rise RC Irregular Residential Building Considering Soil-Structure Interaction
PublicationThe objective of the present study is to investigate the importance of soilstructure interaction effects on the seismic response of a high-rise irregular reinforced-concrete residential building. In order to conduct this research, a detailed three-dimensional structure model was subjected to various earthquake excitations, also including a strong mining tremor. Soil-foundation flexibility was represented using the spring-based...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublicationAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...
-
A pilot study to assess manufacturing processes using selected point measures of vibroacoustic signals generated on a multitasking machine
PublicationThe article presents the method for the evaluation of selected manufacturing processes using the analysis of vibration and sound signals. This method is based on the use of sensors installed outside the machining zone, allowing to be used quickly and reliably in real production conditions. The article contains a developed measurement methodology based on the specific location of microphones and vibration transducers mounted on...
-
Sensorless control of five-phase induction machine supplied by the VSI with output filter
PublicationIn this paper, a novel sensorless control structure based on multi-scalar variables is proposed. The tatic feedback control law is obtained by using the multi-scalar variables transformation, where the multi-scalar variables approach allows a full linearization of the nonlinear system. The control system could be described as “optimized” because of the minimized number of controllers. Furthermore, control system is divided into...
-
When migrant men become more involved in household and childcare duties – the case of Polish migrants in Norway
Publication -
COMPARISON OF SELECTED MORPHOLOGICAL AND RHEOLOGICAL PARAMETERS OF BLOOD IN A GROUP OF OLDER LONG DISTANCE RUNNERS AND UNTRAINED MEN
Publication -
The Effect of Repeated Whole-Body Cryotherapy on Blood Thiol Status in Men Depending on Age and Physical Activity
Publication -
A FPTAS for minimizing total completion time in a single machine time-dependent scheduling problem
PublicationIn this paper a single machine time-dependent scheduling problem with total completion time criterion is considered. There are given n jobs J1,…,Jn and the processing time pi of the ith job is given by pi=a+bisi, where si is the starting time of the ith job (i=1,…,n),bi is its deterioration rate and a is the common base processing time. If all jobs have deterioration rates different and not smaller than a certain constant u>0,...
-
Speed Observer Structure of Induction Machine Based on Sliding Super-Twisting and Backstepping Techniques
PublicationThis paper presents an analysis of the two speed observer structures which are based on the backstepping and sliding super twisting approach. The observer stabilizing functions result from the Lyapunov theorem. To obtain the observer tuning gains the observer structure is linearized near the equilibrium point. The rotor angular speed is obtained from non-adaptive dependence. In the sensorless control system structure the classical...
-
Optical method supported by machine learning for dynamics of C‐reactive protein concentrations changes detection in biological matrix samples
PublicationIn this article we present the novel spectroscopy method supported with machine learning for real-time detection of infectious agents in wastewater. In the case of infectious diseases, wastewater monitoring can be used to detect the presence of inflammation biomarkers, such as the proposed C-reactive protein, for monitoring inflammatory conditions and mass screening during epidemics for early detection in communities of concern,...
-
Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification
PublicationLiquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community...
-
Speed estimation of a car at impact with a W-beam guardrail using numerical simulations and machine learning
PublicationThis paper aimed at developing a new method of estimating the impact speed of a passenger car at the moment of a crash into a W-beam road safety barrier. The determination of such a speed based on the accident outcomes is demanding, because often there is no access to full accident data. However, accurate determination of the impact speed is one of the key elements in the reconstruction of road accidents. A machine learning algorithm...
-
Road traffic can be predicted by machine learning equally effectively as by complex microscopic model
PublicationSince high-quality real data acquired from selected road sections are not always available, a traffic control solution can use data from software traffic simulators working offline. The results show that in contrast to microscopic traffic simulation, the algorithms employing neural networks can work in real-time, so they can be used, among others, to determine the speed displayed on variable message road signs. This paper describes...
-
Multi-criteria Differential Evolution for Optimization of Virtual Machine Resources in Smart City Cloud
PublicationIn a smart city, artificial intelligence tools support citizens and urban services. From the user point of view, smart applications should bring computing to the edge of the cloud, closer to citizens with short latency. However, from the cloud designer point of view, the trade-off between cost, energy and time criteria requires the Pareto solutions. Therefore, the proposed multi-criteria differential evolution can optimize virtual...
-
Slowly-closing valve behaviour during steam machine accelerated start-up
PublicationThe paper discusses the state of stress in a slowly-closing valve during accelerated start-up of a steam turbine. The valve is one of the first components affected by high temperature gradients and is a key element on which the power, efficiency and safety of the steam system depend. The authors calibrated the valve model based on experimental data and then performed extended Thermal-FSI analyses relative to experiment. The issue...
-
Earthquake-induced pounding between equal height multi-storey buildings considering soil-structure interaction
PublicationThe present paper investigates the coupled effect of the supporting soil flexibility and pounding between neighbouring, insufficiently separated equal height buildings under earthquake excitation. Two adjacent three-storey structures, modelled as inelastic lumped mass systems with different structural characteristics, have been considered in the study. The models have been excited using a suit of ground motions with different peak...
-
Experimental tuning of AuAg nanoalloy plasmon resonances assisted by machine learning method
PublicationPlasmonic nanostructures based on AuAg nanoalloys were fabricated by thermal annealing of metallic films in an argon atmosphere. The nanoalloys were chosen because they can extend the wavelength range in which plasmon resonance occurs and thus allow the design of plasmonic platforms with the desired parameters. The influence of initial fabrication parameters and experimental conditions on the formation of nanostructures was investigated....
-
Machine learning approach to packaging compatibility testing in the new product development process
PublicationThe paper compares the effectiveness of selected machine learning methods as modelling tools supporting the selection of a packaging type in new product development process. The main goal of the developed model is to reduce the risk of failure in compatibility tests which are preformed to ensure safety, durability, and efficacy of the finished product for the entire period of its shelf life and consumer use. This kind of testing...
-
Application of discrete wavelet transform in seismic nonlinear analysis of soil–structure interaction problems
PublicationSimulation of soil-structure interaction (SSI) effects is a time-consuming and costly process. However, ignoring the influence of SSI on structural response may lead to inaccurate results, especially in the case of seismic nonlinear analysis. In this paper, wavelet transform methodology has been utilized for investigation of the seismic response of soil-structure systems. For this purpose, different storey outrigger braced buildings...
-
Probabilistic assessment of SMRFs with infill masonry walls incorporating nonlinear soil-structure interaction
PublicationInfill Masonry Walls (IMWs) are used in the perimeter of a building to separate the inner and outer space. IMWs may affect the lateral behavior of buildings, while they are different from those partition walls that separate two inner spaces. This study focused on the seismic vulnerability assessment of Steel Moment-Resisting Frames (SMRFs) assuming different placement of IMWs incorporating nonlinear Soil-Structure Interaction (SSI)....
-
Polymeric Bearings as a new base isolation system suitable for mitigating machine-induced vibrations
PublicationThe present paper summarizes the preliminary results of the experimental shaking table investigation conducted in order to verify the effectiveness of a new base isolation system consisting of Polymeric Bearings in reducing strong horizontal machine-induced vibrations. Polymeric Bearing considered in the present study is a prototype base isolation system, which was constructed with the use of a specially prepared flexible polymer...
-
Machine Learning and Text Analysis in an Artificial Intelligent System for the Training of Air Traffic Controllers
PublicationThis chapter presents the application of new information technology in education for the training of air traffic controllers (ATCs). Machine learning, multi-criteria decision analysis, and text analysis as the methods of artificial intelligence for ATCs training have been described. The authors have made an analysis of the International Civil Aviation Organization documents for modern principles of ATCs education. The prototype...
-
Detection of People Swimming in Water Reservoirs with the Use of Multimodal Imaging and Machine Learning
PublicationEvery year in many countries, there are fatal unintentional drownings in different water reservoirs like swimming pools, lakes, seas, or oceans. The existing threats of this type require creating a method that could automatically supervise such places to increase the safety of bathers. This work aimed to create methods and prototype solutions for detecting people bathing in water reservoirs using a multimodal imaging system and...