Filters
total: 275
Search results for: shear transfer
-
Textile reinforced concrete members subjected to tension, bending, and in-plane loads: Experimental study and numerical analyses
PublicationTextile reinforced concrete has raised increasing research interest during the last years, mainly due to its potential to be used for freeform shell structures involving complex load situations. Yet, most experimental work has focused on test setups with primarily uniaxial loading. In the current work, such setups are complemented with a novel test setup of deep beams, including in-plane bending and shear. Further, nonlinear finite...
-
Optical flow method for measuring deformation of soil specimen subjected to torsional shearing
PublicationIn this study optical flow method was used for soil small deformation measurement in laboratory tests. The main objective was to observe how the deformation distributes along the whole height of cylindrical soil specimen subjected to torsional shearing (TS test). The experiments were conducted on dry non-cohesive soil specimens under two values of isotropic pressure. Specimens were loaded with low-amplitude cyclic torque to analyze...
-
Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order Shear Deformation Beam Theory
PublicationIn this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new obtained beam theory has only one variable which lead to one equation similar to Euler beam theory and also is free of any shear correction factor. The...
-
Recent Achievements in Constitutive Equations of Laminates and Functionally Graded Structures Formulated in the Resultant Nonlinear Shell Theory
PublicationThe development of constitutive equations formulated in the resultant nonlinear shell theory is presented. The specific features of the present shell theory are drilling rotation naturally included in the formulation and asymmetric measures of strains and stress resultants. The special attention in the chapter is given to recent achievements: progressive failure analysis of laminated shells and elastoplastic constitutive relation...
-
Wave Method for Structural Health Monitoring: Testing Using Full-Scale Shake Table Experiment Data
PublicationAn algorithm of the wave method for structural health monitoring (SHM) is tested and calibrated using shake table experiment data of a full-scale, seven-story, reinforced-concrete building slice. The method is based on monitoring changes in the velocity of waves propagating vertically through the structure, identified by least-squares (LSQ) fit of beam models. The experiment was conducted by a team from the University of California,...
-
A Concept of Thermal Effort for Heat-Induced Metal Plasticity
PublicationThis paper proposes a new concept of material effort that considers heat-induced plasticity for heat-resistant steels. These steels indicate a strength differential effect, a stress shearness effect, pressure sensitivity, and other features. Therefore, a three-parameter, temperature-dependent yield function was presented and, next, analytically and geometrically researched. To validate the accuracy of the formulated yield function,...
-
Lateral load resistance of piled raft foundation - A case study of District Jail, Saidu Sharif, Swat Pakistan
PublicationPiled raft foundations under lateral loads are usually designed as a pile group, ignoring the contribution of the raft to resisting the lateral loads. In this paper, a case study was performed to determine the raft's contribution to the lateral load resistance. This study analyzed a pile-supported reinforced concrete retaining wall for two different foundation conditions, i.e., pile group foundation and pile raft foundation. Pile group...
-
Effect of interlayer bonding quality of asphalt layers on pavement performance
PublicationThe quality of interlayer bonding at the interfaces between the asphalt layers in flexible pavements affects the overall pavement performance. Lack or partial lack of interlayer bonding between asphalt layers can cause pavement's premature failures such as rutting, slippage of the wearing course, cracking or simply a reduction in the calculated fatigue life of the pavement structure. This paper shows the case studies of investigation...
-
Bone healing under different lay‐up configuration of carbon fiber‐reinforced PEEK composite plates
PublicationSecondary healing of fractured bones requires an application of an appropriate fixa-tor. In general, steel or titanium devices are used mostly. However, in recent years,composite structures arise as an attractive alternative due to high strength to weightratio and other advantages like, for example, radiolucency. According to Food andDrug Administration (FDA), the only unidirectionally reinforced composite allowed tobe implanted...
-
Contact with coupled adhesion and friction: Computational framework, applications, and new insights
PublicationContact involving soft materials often combines dry adhesion, sliding friction, and large deformations. At the local level, these three aspects are rarely captured simultaneously, but included in the theoretical models by Mergel et al., (2019). We here develop a corresponding finite element framework that captures 3D finite-strain contact of two deformable bodies. This framework is suitable to investigate sliding friction even...
-
LCF behavior of 2024AA under uni- and biaxial loading taking into account creep pre-deformation
PublicationThis study presents the results of experimental low-cycle fatigue (LCF) tests of aluminum 2024 alloy T3511 temper in uni- and biaxial loading states. Tests were carried out on both the as-received material (hardened extruded rods) and material with different pre-deformation histories. These deformations were carried out in the creep process at 200 °C and 300 °C for two different levels of at each temperature. The pre-deformed material’s...
-
Process zone in the Single Cantilever Beam under transverse loading. - Part II: Experimental
PublicationThis paper describes an experimental arrangement to evaluate stress/strain fields in the process zone of asymmetric adhesively bonded joints. A transparent polycarbonate flexible beam was bonded to an aluminium alloy rigid block with an epoxy adhesive in a Single Cantilever Beam (SCB) configuration. The flexible adherend was loaded in the direction parallel to the initial crack front at constant rate. To monitor strains induced...
-
Mechanical analysis of eccentric defected bilayer graphene sheets considering the van der Waals force
PublicationIn this article, we have tried to simulate nonlinear bending analysis of a double-layered graphene sheet which contains a geometrical imperfection based on an eccentric hole. The first-order shear deformation theory is considered to obtain the governing equations. Also, the nonlinear von Kármán strain field has been assumed in order to obtain large deformations. Whereas the double-layered graphene sheet has been considered, the...
-
Cyclic Behavior of Masonry Shear Walls Retrofitted with Engineered Cementitious Composite and Pseudoelastic Shape Memory Alloy
PublicationThe behavior of masonry shear walls reinforced with pseudoelastic Ni–Ti shape memory alloy (SMA) strips and engineered cementitious composite (ECC) sheets is the main focus of this paper. The walls were subjected to quasi-static cyclic in-plane loads and evaluated by using Abaqus. Eight cases of strengthening of masonry walls were investigated. Three masonry walls were strengthened with different thicknesses of ECC sheets using...
-
Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory
PublicationThis article is devoted to investigate the stability of different types of Single Walled Carbon Nanotubes (SWCNTs) such as zigzag, chiral, and armchair types which are rested in Winkler elastic foundations exposing to both the low and high temperature environments. Also, the Surface effects which include surface energy and surface residual stresses, are taken into consideration in this study. It may be noted that the surface energy...
-
An Innovative Approach to the Forecasting of Energetic Effects While Wood Sawing
PublicationIn the classical approach, energetic effects (cutting forces and cutting power) of wood sawing process are generally calculated on the basis of the specifi c cutting resistance, which is in the case of wood cutting the function of more or less important factors. On the other hand, the cutting forces (power) problem may be tackled with an innovative, up-to-date fundamental analysis of the mechanics of sawing based on modern fracture mechanics....
-
The influence of different glycerine purities on chemical recycling process of polyurethane waste and resulting semi‐products
PublicationChemical recycling is the most favourable recycling method due to the possibility of polyol recovery. This work is dedicatedto the utilisation of crude glycerine and polyurethane waste. It aims at determining the impact of the use of glycerine fromthe production of biodiesel with various degrees of purity as a cleavage agent on the decomposition process of polyurethanefoam. The influence of glycerine purit y on the chemical structure...
-
An innovative approach to the forecasting of energetic effects while wood sawing
PublicationIn the classical approach, energetic effects (cutting forces and cutting power) of wood sawing process are generally calculated on the basis of the specific cutting resistance, which is in the case of wood cutting the function of more or less important factors. On the other hand, the cutting forces (power) problem may be tackled with an innovative, up-to-date fundamental analysis of the mechanics of sawing based on modern fracture...
-
A mathematical model of rheological behavior of novel bio-based isocyanate-terminated polyurethane prepolymers
PublicationIn this paper, the results of rheological study on isocyanate-terminated polyurethane prepolymers, containing modified soybean oil residues incorporated into the chemical structure are described. Isocyanate-terminated prepolymers were synthesized from 4,4′-diphenylmethane diisocyanate and the mixture of hydroxylated soybean oil and commercial polyether. The measurements were performed by using rotary rheometer R/S-CPS+ (Brookfield,...
-
Corrugated Sheeting as a Member of a Shear Panel Under Repeated Load—Experimental Test
PublicationIn stressed-skin design, the cladding stiffening effect on structures is taken into account. However, the “traditional” design is more usual, wherein this effect is neglected. Even if the diaphragm actions are not regarded, in particular cases such as big sheds (and others), the parasitic (unwanted) stressed-skin action may occur with the result of leakage or even failure. The structures of this kind have already been built. Thus,...
-
Galerkin formulations of isogeometric shell analysis: Alleviating locking with Greville quadratures and higher-order elements
PublicationWe propose new quadrature schemes that asymptotically require only four in-plane points for Reissner–Mindlin shell elements and nine in-plane points for Kirchhoff–Love shell elements in B-spline and NURBS-based isogeometric shell analysis, independent of the polynomial degree p of the elements. The quadrature points are Greville abscissae associated with pth-order B-spline basis functions whose continuities depend on the specific...
-
A procedure for the identification of effective mechanical parameters of additively manufactured elements using integrated ultrasonic bulk and guided waves
PublicationThe subject of the current work was a simple but robust novel two-stage procedure for the non-destructive determination of effective elastic constants using ultrasonic wave propagation. First, ultrasonic bulk wave velocities measured on cubic samples were used to calculate most of the elements of the stiffness matrix. Secondly, the remaining elements were determined using the dispersion curves of elastic guided waves measured on...
-
Consideration of Pseudo Strain Energy in Determination of Fatigue Life and Microdamage Healing of Asphalt Mastics
PublicationRest periods between cyclic loads can lead to recovery of damage and extension of fatigue life. This phenomenon is referred to as healing. Healing is clearly observed in bituminous materials, such as asphalt mastics, which belong to the components of asphalt mixtures. Due to the nature of road pavement traffic loading, which is characterized by series of intermittent pulses with rest periods, consideration of healing is necessary...
-
Material characterisation of biaxial glass-fibre non-crimp fabrics as a function of ply orientation, stitch pattern, stitch length and stitch tension
PublicationDue to their high density-specific stiffnesses and strength, fibre reinforced plastic (FRP) composites are particularly interesting for mobility and transport applications. Warp-knitted non-crimp fabrics (NCF) are one possible way to produce such FRP composites. They are advantageous because of their low production costs and the ability to tailor the properties of the textile to the reinforcement and drape requirements of the application....
-
Revisiting the estimation of cutting power with different energetic methods while sawing soft and hard woods on the circular sawing machine: a Central European case
PublicationIn the classical approaches, used in Central Europe in practice, cutting forces and cutting power in sawing processes of timber are commonly computed by means of the specific cutting resistance kc. It needs to be highlighted that accessible sources in handbooks and the scientific literature do not provide any data about wood provenance, nor about cutting conditions, in which cutting resistance has been empirically determined. In...
-
Fracture Energy of Bonded Joints with 2D Elastic Adhesive Layer
PublicationWhen bonded joint is subjected to mode I fracture loading, the adhesive joints analytical solutions treats the adhesive layer, usually, as not existing or 1D Hooke elastic layer. In the case of 1D elastic layer, represented as Hookes spring element, is acting, only, in direction contrary to the applied load. Basing on the information yielded from sensitive laser profilometry technique, where deflections of bonded part of the joint...
-
Assessment of dynamic characteristics of thin cylindrical sandwich panels with magnetorheological core
PublicationBased on the equivalent single-layer linear theory for laminated shells, free and forced vibrations of thin cylindrical sandwich panels with magnetorheological core are studied. Five variants of available magnetorheological elastomers differing in their composition and physical properties are considered for smart viscoelastic core. Coupled differential equations in terms of displacements based on the generalized kinematic hypotheses...
-
Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test
PublicationLow-temperature cracking is one of the most common road pavement distress types in Poland. While bitumen performance can be evaluated in detail using bending beam rheometer (BBR) or dynamic shear rheometer (DSR) tests, none of the normalized test methods gives a comprehensive representation of low-temperature performance of the asphalt mixtures. This article presents the Bending Beam Creep test performed at temperatures from −20...
-
Numerical analysis of elastic wave propagation in unbounded structures
PublicationThe main objective of this paper is to show the effectiveness and usefulness of the concept of an absorbing layer with increasing damping (ALID) in numerical investigations of elastic wave propagation in unbounded engineering structures. This has been achieved by the authors by a careful investigation of three different types of structures characterised by gradually increasing geometrical and mathematical description complexities....
-
Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment
PublicationThis work performs a novel quasi three-dimensional (3D) bending analysis for a moderately thick functionally graded material (FGM) made of nanoceramics and metal powders, in presence of porosities due to some incorrect manufacturing processes. Such porosities can appear within the plate in two forms, namely, even and uneven distributions. The modeled system assumes a polymer matrix where both shear and transverse factors coexist....
-
On the non-linear dynamics of torus-shaped and cylindrical shell structures
PublicationIn this study, the non-linear dynamic analysis of torus-shaped and cylindrical shell-like structures has been studied. The applied material is assumed as the functionally graded material (FGM). The structures are considered to be used for important machines such as wind turbines. The effects of some environmental factors on the analysis like temperature and humidity have been considered. The strain field has been calculated in...
-
Mechanical simulation of artificial gravity in torus-shaped and cylindrical spacecraft
PublicationLarge deformations and stress analyses in two types of space structures that are intended for people to live in space have been studied in this research. The structure under analysis is assumed to rotate around the central axis to create artificial gravitational acceleration equal to the gravity on the Earth's surface. The analysis is fully dynamic, which is formulated based on the energy method by using the first-order shear deformation...
-
Bitumen-Based Poroelastic Pavements: Successful Improvements and Remaining Issues
PublicationThis article presents the development process of designing and testing poroelastic pavement based on highly polymer-modified bitumen. Poroelastic wearing course was composed of mineral and rubber aggregate mixed with highly polymer-modified bitumen, in contrast to previous trials, during which polyurethane resins were mainly used as binder, which led to several serious technological problems concerning difficult production, insufficient...
-
Effect of bending-torsion on fracture and fatigue life for 18Ni300 steel specimens produced by SLM
PublicationIn this study, different fracture surfaces caused by fatigue failure were generated from 18Ni300 steel produced by selective laser melting (SLM). Hollow round bars with a transverse hole were tested under bending-torsion to investigate the crack initiation mechanisms and fatigue life. Next, the post-failure fracture surfaces were examined by optical profilometer and scanning electron microscope. The focus is placed on the relationship...
-
Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory
PublicationThis paper is devoted to the theoretical study of the dynamic response of non-cylindrical curved viscoelastic single-walled carbon nanotubes (SWCNTs). The curved nanotubes are largely used in many engineering applications, but it is challenging in understanding mechanically the dynamic response of these curved SWCNTs when considering the influences of the material viscosity. The viscoelastic damping effect on the dynamic response...
-
Nano soil improvement technique using cement
PublicationNano soil-improvement is an innovative idea in geotechnical engineering. Nanomaterials are among the newest additives that improve soil properties. Herein, laboratory tests, such as unconfined compressive strength, direct shear test, and initial tests, were conducted to investigate the geotechnical properties of Kelachay clay with micro- and nanosized cement to evaluate its particles in untreated soil and observe changes in the...
-
Fracture Surface Behavior of 34CrNiMo6 High-Strength Steel Bars with Blind Holes under Bending-Torsion Fatigue
PublicationThe present study evaluates the fracture surface response of fatigued 34CrNiMo6 steel bars with transverse blind holes subjected to bending with torsion loading. The analysis of the geometric product specification was performed by means of height parameters Sx, functional volume parameters Vx, and fractal dimension Df. Surface topography measurements were carried out using an optical profilometer with focus variation technology....
-
INFLUENCE OF TIME ON THE BEARING CAPACITY OF PRECAST PILES
PublicationOne of the most popular types of foundations in layered subsoil with very differentiated soil shear strengths are precast piles. One of the reasons is a fact that we can well control the driving process during the installation of these piles. The principles of the assessment of bearing capacity and settlements of the piles given by Eurocode 7, concentrate on two main methods, i.e. Static Pile Load Tests (SPLT) and Dynamic Driving...
-
The protocol for using elastic wall model in modeling blood flow within human artery
PublicationMedical diagnostic tools will play a major role in the future for an effective patient treatment and reduction their mortality, related to the cardiovascular system diseases (CVDs). There is an urgent need for developing diagnostic procedure to be robust, reliable, accurate and efficient, in the framework of a paradigm shift. Application of numerical techniques is seen as a perspective tool for such purpose. Nevertheless, existing...
-
Application of shifted Chebyshev polynomial-based Rayleigh–Ritz method and Navier’s technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation
PublicationPresent study is dealt with the applicability of shifted Chebyshev polynomial based Rayleigh-Ritz method and Navier’s technique on free vibration of Functionally Graded (FG) beam with uniformly distributed porosity along the thickness of the beam. The material properties such as Young’s modulus, mass density, and Poisson’s ratio are also considered to vary along the thickness of the FG beam as per the power-law exponent model....
-
A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition
PublicationA drawback to the material composition of thick functionally graded materials (FGM) beams is checked out in this research in conjunction with a novel hyperbolic‐polynomial higher‐order elasticity beam theory (HPET). The proposed beam model consists of a novel shape function for the distribution of shear stress deformation in the transverse coordinate. The beam theory also incorporates the stretching effect to present an indirect...
-
Advanced Hysteretic Model of a Prototype Seismic Isolation System Made of Polymeric Bearings
PublicationThe present paper reports the results of acomprehensive study designed to verify the effectiveness of an advanced mathematical model in simulating the complex mechanical behaviour of a prototype seismic isolation system made of polymeric bearings (PBs). Firstly, in order to construct the seismic bearings considered in this research, a specially prepared flexible polymeric material with increased damping properties was employed....
-
Single-phase product obtained via crude glycerine depolymerisation of polyurethane elastomer: structure characterisation and rheological behaviour
PublicationPolyurethane recycling is a topic of growing interest due to the increasing amount of polyurethanewaste. The main purpose of polyurethane feedstock recycling is to recover the starting polyol, a valuable material. In thiswork, amethod of polyurethane thermo-chemical recycling, glycerolysisbymeansof crude glycerine, is proposed. Themaineffort is focusedonthe employment of crude glycerine without purification from biodiesel production...
-
Efficiency of thermomechanical reclaiming of ground tire rubber conducted in counter-rotating and co-rotating twin screw extruder
PublicationIn this article the results of research on a continuous thermomechanical reclaiming process of ground tire rubber (GTR) conducted in a twin screw extruder are presented. The effects of the rotation direction (co-rotating/counter-rotating), design of co-rotating plasticizing units and the rotational speed of the screws on the extruder working parameters, sol fraction and the degree of reclaiming in the obtained products were described....
-
Rheology of potato starch chemically modified with microwave-assisted reactions
PublicationNative potato starch was sulfated, selenated, borated, silicated and zincatated by means of microwave-assisted reactions with varying doses of relevant reagents. Resulting products were characterized involving rheological behavior of pastes, their weight-average molecular weight (Mw), and radius of gyration (Rg). Most of the pastes showed shear-thinning behavior, with the flow behavior index (n) below unity. The pastes of starch...
-
Comparative analysis of mechanical conditions in bone union following first metatarsophalangeal joint arthrodesis with varied locking plate positions: A finite element analysis
PublicationFirst metatarsophalangeal joint arthrodesis is a typical medical treatment performed in cases of arthritis or joint deformity. The gold standard for this procedure is arthrodesis stabilisation with the dorsally positioned plate. However, according to the authors’ previous studies, medially positioned plate provides greater bending stiffness. It is worth to compare the mechanical conditions for bone formation in the fracture callus...
-
Polygons vs. clumps of discs: A numerical study of the influence of grain shape on the mechanical behaviour of granular materials
PublicationWe performed a series of numerical vertical compression tests on assemblies 01 20 granular material using a Discrete Element code and studied the results with regard to the grain shape. The samples consist of 5000 grains made from either 3 overlapping discs (clumps - grains with concavities) or six-edged polygons (convex grains). These two grain type have similar external envelope, which is a fund ion of a geometrical parameter...
-
Temperature Evolution, Material Flow, and Resulting Mechanical Properties as a Function of Tool Geometry during Friction Stir Welding of AA6082
PublicationThe friction stir welding process was simulated for joining AA6082 aluminum alloy with the use of the computational fluid dynamics method. Two different tool geometries were used—a tapered cylindrical pin (simple pin) and a hexagonal pin with grooves (complex pin). The analysis of the simulations performed was discussed in terms of temperature evolution during the process, total heat input, residual stresses and material flow....
-
Ground lemon and stevia leaves as renewable functional fillers with antioxidant activity for high-density polyethylene composites
PublicationThe development of new sustainable material solutions in the processing of thermoplastic polymers concerns both the application of biopolymers and the use of valorized plant derivatives as fillers and modifiers of petrochemical polymers. Herein, the possibility of using unprocessed raw parts of two commonly used in the food industry leaves, i.e., lemon (LL) and stevia (ST), as active and functional fillers for high-density polyethylene...
-
Data-Driven Modeling of Mechanical Properties of Fiber-Reinforced Concrete: A Critical Review
PublicationFiber-reinforced concrete (FRC) is extensively used in diverse structural engineering applications, and its mechanical properties are crucial for designing and evaluating its performance. The compressive, flexural, splitting tensile, and shear strengths of FRCs are among the most important attributes, which have been discussed more extensively than other properties. The accurate prediction of these properties, which are required...