Filters
total: 1682
filtered: 1297
displaying 1000 best results Help
Search results for: STATIC TENSILE TEST, MECHANICAL PROPERTIES
-
Mechanical properties of Precontraint 1202S coated fabric under biaxial tensile test with different load ratios
PublicationThe paper describes a method of laboratory tests necessary for identifying the mechanical properties of polyester coated fabrics named Precontraint 1202S with PVDF surface treatment. Two sets of initial material parameters for dense net model and orthotropic model are specified. Material parameters for Precontraint 1202S coated fabric are specified on the basis of the biaxial tensile tests for different load ratios. In order to...
-
Effect of long term service at elevated temperatures on mechanical properties of Manaurite XM reformer tubes
PublicationMicrostructure transformations occur in the Manaurite XM cast steel tubes during long-term operation in the reformer furnace were revealed and described. The rela tionship between mechanical properties, an increase of internal diameter of the tube and microstructure degradation is discussed. Static tensile test was performed on two types of samples with different shapes. It has been shown differences in the results of tests...
-
Mechanical response of human thoracic spine ligaments under quasi-static loading: An experimental study
PublicationPurpose This study aimed to investigate the geometrical and mechanical properties of human thoracic spine ligaments subjected to uniaxial quasi-static tensile test. Methods Four human thoracic spines, obtained through a body donation program, were utilized for the study. The anterior longitudinal ligament (ALL), posterior longitudinal ligament (PLL), capsular ligament (CL), ligamenta flava (LF), and the interspinous ligament and...
-
The influence of welding heat input on the quality and properties of high strength low-alloy dissimilar steel butt joints
PublicationThe paper presents the results of non-destructive and destructive tests of dissimilar highstrength low-alloy S460ML and S460N steel butt joints. These steels are characterized by similar mechanical properties, but their carbon equivalent CeIIW values are much different. The joints were made using different values of heat input for each welding bead. They were tested by non-destructive methods: visual, penetrant, radiographic and...
-
Numerical modelling and analysis of steel specimens subjected to marine immersed corrosion and tensile load
PublicationThe present study develops numerical models to analyse the behaviour of steel specimens subjected to marine immersed corrosion degradation and tensile load. The finite element method with the use of the explicit dynamic solver LS-DYNA, satisfying the quasi-static conditions, is employed. Two numerical models are developed, where in the first one, the scans of surfaces gathered from corroded plate specimens are implemented directly...
-
Effect of bio-based components on the chemical structure, thermal stability and mechanical properties of green thermoplastic polyurethane elastomers
PublicationIt seems to be obvious that conditions changes during polyols synthesis have impact on the polyols properties. Even the chemical formula is the same or similar, physicochemical properties and also molecular weight of polyols might be different and are significant in term of future polyurethanes properties and processing. In this work, fully bio-based poly(propylene succinate)s synthesized at different temperature conditions were...
-
Morphology and properties of recycled polyethylene/ground tyre rubber/thermoplastic poly(ester-urethane) blends
PublicationThe growing amount of plastics waste produced every year resulted in development of mechanical and chemical recycling methods of polymers and their blends or composites. From the environmental point of view, the possibility of plastics waste reusing and recycling is desirable. In this study three polymer blends were obtained with using recycled polyethylene (RPE), ground tyre rubber (GTR) and thermoplastic poly(ester-urethane)...
-
Assessment of FSW Welds Made of Aluminum Alloy AW7075-T651.
PublicationThis paper summarizes the results of experimental studies in which the aluminum alloy AW7075-T651 was friction stir welded (FSW) using various combinations of process parameters (rotational - R and travel speed - T). Mechanical properties of the test welds were assessed by using static tensile test and Vickers hardness measurement. The temperature of the welded plates was monitored during welding by means of thermocouples placed...
-
The Effect of Surface Treatment with Isocyanate and Aromatic Carbodiimide of Thermally Expanded Vermiculite Used as a Functional Filler for Polylactide-Based Composites
PublicationIn this work, thermally expanded vermiculite (TE-VMT) was surface modified and used as a filler for composites with a polylactide (PLA) matrix. Modification of vermiculite was realized by simultaneous ball milling with the presence of two PLA chain extenders, aromatic carbodiimide (KI), and 4,4’-methylenebis(phenyl isocyanate) (MDI). In addition to analyzing the particle size of the filler subjected to processing, the efficiency...
-
Effect of underwater friction stir welding parameters on AA5754 alloy joints: experimental studies
PublicationThe water as a welding environment may generate serious technological and metallurgical problems but in certain cases, the physicochemical properties of water can be used effectively, e.g., to impart the specific properties of welded materials. The purpose of the work was verification of effectiveness of the water cooling of aluminium alloy AA5754 for various sets of technological parameters of underwater friction stir welding...
-
Investigation of Wood Flour Size, Aspect Ratios, and Injection Molding Temperature on Mechanical Properties of Wood Flour/Polyethylene Composites
PublicationIn the present research, wood flour reinforced polyethylene polymer composites with a coupling agent were prepared by injection molding. The effects of wood flour size, aspect ratios, and mold injection temperature on the composites’ mechanical properties were investigated. For the preparation of the polymer composites, five different formulations were created. The mechanical properties including tensile strength and the modulus,...
-
Determination of Mechanical Properties of P91 Steel by Means of Magnetic Barkhausen Emission
PublicationIn this work, an attempt at determination of mechanical properties by means of a method based on magnetic Barkhausen emission measurements was proposed. The specimens made of P91 steel were subjected to creep or plastic flow which were interrupted after a range of selected time periods in order to achieve specimens with an increasing level of strain. Subsequently, measurements of magnetic Barkhausen emission were carried out, and...
-
Curing characteristics, mechanical and thermal properties of reclaimed ground tire rubber cured with various vulcanizing systems
PublicationGround tire rubber was thermo-mechanical reclaimed at 120 °C using a co-rotating twin screw extruder. The effect of vulcanizing system type on curing characteristics, static mechanical properties (tensile strength, elongation-at-break, hardness and resilience), dynamic mechanical properties and thermal properties of reclaimed ground tire rubber was investigated. Reclaimed rubber was cured using different types of vulcanization...
-
Static and Dynamic Mechanical Properties of 3D Printed ABS as a Function of Raster Angle
PublicationDue to the rapid growth of 3D printing popularity, including fused deposition modeling (FDM), as one of the most common technologies, the proper understanding of the process and influence of its parameters on resulting products is crucial for its development. One of the most crucial parameters of FDM printing is the raster angle and mutual arrangement of the following filament layers. Presented research work aims to evaluate different...
-
High-density Polyethylene - Expanded Perlite Composites: Structural Oriented Analysis of Mechanical and Thermomechanical Properties
PublicationAs part of this work, research was carried out on the effect of the addition of expanded perlite (PR) on the mechanical and thermomechanical properties of high-density polyethylene (PE) composites. Composites containing from 1 to 10 wt% of the inorganic filler were produced. Polyethylene-based composites manufactured by twin-screw extrusion and formed in the compression molding process were subjected to mechanical, thermomechanical,...
-
PROCESSING, MECHANICAL AND THERMAL PROPERTIES OF RECYCLED LOW-DENSITY POLYETHYLENE STREAMS
PublicationThe recycling of plastics is currently one of the most significant industrial challenges. Due to the enormous amounts of plastic wastes generated by various industry branches, it is essential to look for the potential methods of their utilization. Nevertheless, for the efficient application of recycled materials it is crucial to analyze their performance. Therefore, in presented paper we investigated the processing (melt flow index),...
-
Curing characteristics, mechanical properties and morphology of butyl rubber filled with ground tire rubber (GTR)
PublicationThe results on testing application of ground tire rubber (GTR), as potential filler for butyl rubber, are pre- sented. The GTR content variation, within the range of 10–90 phr, was studied with respect to the vulcanization process, static mechanical properties (tensile strength, elongation-at-break, hardness and resilience), dynamic mechanical properties and the morphology of the obtained vulcanizates. Butyl rubber was characterized...
-
Mechanical, Thermal and Rheological Properties of Polyethylene-Based Composites Filled with Micrometric Aluminum Powder
PublicationInvestigations related to polymer/metal composites are often limited to the analysis of the electrical and thermal conductivity of the materials. The presented study aims to analyze the impact of aluminum (Al) filler content (from 1 to 20 wt%) on the rarely investigated properties of composites based on the high-density polyethylene (HDPE) matrix. The crystalline structure, rheological (melt flow index and oscillatory rheometry),...
-
Characterization of volatile compounds, structural, thermal and physico-mechanical properties of cross-linked polyethylene foams degraded thermo-mechanically at variable times
PublicationWaste cross-linked polyethylene foam (wXLPE) was thermo-mechanically degraded at variable time using internal batch mixer. The progress of wXLPE degradation has been investigated by using a simultaneous thermogravimetric/differential scanning calorimetry analyzer coupled with Fourier transform infrared spectroscopy, swelling measurements, tensile tests and scanning electron microscopy. Volatile organic compounds generated during...
-
Styrene-Butadiene Rubber/Modified Ground Tire Rubber Blends Co-Vulcanization: Effect of Accelerator Type
PublicationGround tire rubber was thermo-mechanically modified with using a co-rotating twin screw extruder. Modification of GTR was conducted in autothermal conditions. Styrene-butadiene rubber and modified ground tire rubber blends were prepared via two-roll milling. Obtained compounds were cured with conventional system (sulfur/vulcanization accelerator ratio was 2:1). During this research three commonly vulcanization accelerators (MBT,...
-
Auxetic foams
PublicationThis paper presents a method of producing auxetic polyurethane foams (PUFs) and their unique properties. The experience was based on a synthesis of traditional flexible polyurethane foam and thermal conversion to auxetic foam. The foam specimens were transformed from conventional Poisson's ratio to auxetic (negative Poisson's ratio) [1]. Basic research was performed to determine the mechanical properties and cell structure. Auxetic...
-
Insights into Compatibilization of Poly(ε-caprolactone)-based Biocomposites with Diisocyanates as Modifiers of Cellulose Fillers
PublicationThis study aimed to analyze the impact of cellulose fillers’ modification with diisocyanates on the performance of composites based on the poly(ε-caprolactone) (PCL) matrix. Four most commonly used diisocyantes (isophorone, hexamethylene, toluene, and methylene diphenyl) were applied as modifiers of cellulose fillers (5 and 15 wt% per mass of filler). Modified fillers were introduced in the amount of 30 wt% into the PCL matrix....
-
Prediction of the Mechanical Properties of P91 Steel by Means of Magneto-acoustic Emission and Acoustic Birefringence
PublicationThe paper describes an application of nondestructive volumetric magnetic and ultrasonic techniques for evaluation of the selected mechanical parameter variations of P91 steel having direct influence on its suitability for further use in critical components used in power plants. Two different types of deformation processes were carried out. First, a series of the P91 steel specimens was subjected to creep and second, one to plastic...
-
Copper Slag as a Potential Waste Filler for Polyethylene-Based Composites Manufacturing
PublicationThe present study aimed to analyze the application of waste material from copper production– copper slag (ŻŻL) as filler for composites based on the high-density polyethylene (HDPE). Copper slag filler was introduced in the amounts of 1–20 wt%, and its influence on the appearance (color analysis), chemical structure (Fourier-transform infrared (FTIR) spectroscopy), microstructure (optical microscopy), as well as static (tensile...
-
GTR/NBR/Silica Composites Performance Properties as a Function of Curing System: Sulfur versus Peroxides
PublicationIn this work, conventional sulfur and two types of organic peroxides (dicumyl peroxide (DCP) and di-(2-tert-butyl-peroxyisopropyl)-benzene (BIB)) curing systems were used to investigate the possibility for tailoring of the performance properties of GTR/NBR blends reinforced with a variable content of highly dispersive silica (0–30 phr). The curing characteristics, static mechanical and acoustical properties, swelling behavior,...
-
Interfacial adhesion evaluation in (low-density polyethylene)/elastomer blends
PublicationLow-density polyethylene (LDPE) with different elastomers at a ratio of 50/50 wt% blends was prepared by using a co-rotating twin-screw extruder. Three kinds of elastomers were used: ground tire rubber (GTR), partially crosslinked butyl rubber (KalarVR ), and styrenebutadiene- rubber block copolymer (SBS; KratonVR ). For better characterization of interaction between polyethylene and elastomer, influence of the type of elastomer on...
-
Poly(ε-Caprolactone)/Brewers’ Spent Grain Composites—The Impact of Filler Treatment on the Mechanical Performance
PublicationWaste lignocellulose materials, such as brewers’ spent grain, can be considered very promising sources of fillers for the manufacturing of natural fiber composites. Nevertheless, due to the chemical structure differences between polymer matrices and brewers’ spent grain, filler treatment should be included. The presented work aimed to investigate the impact of fillers’ reactive extrusion on the chemical structure and the poly(ε-caprolactone)/brewers’...
-
Experimental and numerical evaluation of mechanical behaviour of composite structural insulated panels
PublicationComposite structural insulated panels (CSIPs) are novel prefabricated elements for structural applications. Panels under consideration are made from glass-fibre reinforced magnesia cement boards as facesheets and expanded polystyrene foam (EPS) as a core. Quasi-static full-scale and model bending tests under monotonic loading were performed to recognize mechanical properties of CSIPs in flexure. In addition, tensile, compressive,...
-
Processing and structure–property relationships of natural rubber/wheat bran biocomposites
PublicationIn this work, wheat bran was used as cellulosic filler in biocomposites based on natural rubber. The impact of wheat bran content [ranging from 10 to 50 parts per hundred rubber (phr)] on processing, structure, dynamic mechanical properties, thermal properties, physico-mechanical properties and morphology of resulting biocomposites was investigated. For better characterization of interfacial interactions between natural rubber...
-
Interfacially modified LDPE/GTR composites with non-polar elastomers: From microstructure to macro-behavior
PublicationThis paper provides some new insights into the mechanism of interaction and modifications in thermoplastic composites based on low density polyethylene (LDPE), ground tire rubber (GTR) and non-polar elastomer. The composites were prepared using a co-rotating twin-screw extruder at variable LDPE/GTR ratio and constant elastomer content. Two types of commercial elastomer were applied: styrene-butadiene-styrene (SBS) block copolymers (Kraton®)...
-
Load capacity of steel-aluminium brackets under static and cyclic laboratory tests
PublicationThe aim of the research is the laboratory investigation of steel-aluminium brackets employed to fasten lightweight curtain walls to building facilities. Static pressure, suction forces, and cyclic loads parallel to end plates (horizontal – to simulate wind influence) were applied in the study. The steel-aluminium brackets were tested on a reinforced concrete substrate made of C30/37 concrete class to simulate the real working conditions....
-
Plasticity of Bead-On-Plate Welds Made with the Use of Stored Flux-Cored Wires for Offshore Applications
PublicationExtreme atmospheric conditions in the marine and offshore industry are harmful to engineering materials, especially to welded joints, and may cause degradation of their properties. This article presents the results of research on the plasticity of bead-on-plate welds made using two types of seamless, copper plated flux-cored wires. Before welding, spools with wire were stored for 1 month in two distinct locations with different...
-
The impact of filler thermomechanical modifications on static and dynamic mechanical performance of flexible foamed polyurethane/ground tire rubber/zinc borate composites
PublicationThe rapid development of the automotive industry is very beneficial to many aspects of human life, but it is also a very significant environmental burden. The most straightforward impact is related to the generation of exhaust, but the management of post-consumer car parts is also a major challenge. Among them, waste tires are very burdensome due to their enormous numbers. Therefore, it is essential to develop novel, environmentally...
-
Underwater Local Cavity Welding of S460N Steel
PublicationIn this paper, a comparison of the mechanical properties of high-strength low-alloy S460Nsteel welded joints is presented. The welded joints were made by the gas metal arc welding (GMAW)process in the air environment and water, by the local cavity welding method. Welded joints were testedfollowing the EN ISO 15614-1:2017 standard. After welding, the non-destructive—visual, penetrant,radiographic, and ultrasonic (phased array) tests...
-
INSIGHTS INTO THE PROCESSING, STRUCTURE, AND MECHANICAL PERFORMANCE OF POLYETHYLENE/GYPSUM COMPOSITES
PublicationPolymer composites are used in all branches of industry, with numerous applications. Despite the many years of modifying commodity polymers, using novel fillers allows the range of their applicability to be extended. The impact of new types of fillers on the polymer matrix is not always predictable and requires further studies. The presented study analyzed the application of gypsum as a filler for composites based on high-density...
-
Processing, mechanical and thermal behavior assessments of polycaprolactone/agricultural wastes biocomposites
PublicationIn this paper, brewer’s spent grain (BSG) was applied as potential lignocellulose biofiller in biocompos-ites based on polycaprolactone (PCL). The PCL/BSG biocomposites filled with varying content of biofillerswere prepared via low-temperature melt-compounding. These conditions allow limiting thermal degra-dation of used biofillers during processing. The influence of biofiller content (ranging from 25 to 200parts by weight on 100...
-
Impact of laser beam welding on mechanical behaviour of 2.25Cr–1Mo (P22) steel
PublicationThe use of welding processes in the manufacturing and repair of structures intended for the energy industry plays a key role in the guarantee of a continuous supply of fossil fuels, which is the basic condition for ensuring energy security. A square butt joint of 10 mm thick plate of 2.25Cr–1Mo (P22) steel was fabricated by autogenous laser beam welding process and then post-weld heat treatment (PWHT) for two sets of process parameters...
-
Comprehensive Enhancement of Prepolymer-Based Flexible Polyurethane Foams’ Performance by Introduction of Cost-Effective Waste-Based Ground Tire Rubber Particles
PublicationMaterial innovations in polyurethane (PU) foams should ideally combine performance enhancement, environmental impact limitation, and cost reduction. These goals can be achieved by applying recycled or waste-based materials without broader industrial applications, implicating their low price. Herein, from 5 to 20 parts by weight of ground tire rubber (GTR) particles originated from the recycling of postconsumer car tires were incorporated...
-
Mechanical properties of PVDF-coated fabric under tensile tests
PublicationThis article describes the laboratory tests necessary to identify the mechanical properties of the polyvinylidene fluoride (PVDF)-coated fabrics named Precontraint 1202S and Precontraint 1302S. First, a short survey of the literature concerning the description of coated woven fabrics is presented. Second, the material parameters for PVDF-coated fabrics are specified on the basis of biaxial tensile tests. A comparison of the 1:1...
-
Quasistatic and fatigue behavior of an AISI H13 steel obtained by additive manufacturing and conventional method
PublicationThis work aims to compare the mechanical behavior of an AISI H13 steel obtained by additive manufacturing with that obtained by conventional manufacturing methods. The average values of the ultimate tensile strength (UTS) and ductility obtained for the specimens produced by the conventional method were equal to 658 MPa and 18%, respectively, which compares with 503 MPa and 0.75% registered for the selective laser melting (SLM)...
-
FE investigations of the effect of fluctuating local tensile strength on coupled energetic-statistical size effect in concrete beams
PublicationThe effect of fluctuating local tensile strength on a coupled energetic-statistical size effect in plain concrete beams under bending was numerically investigated. First, the influence of varying autocorrelation length of the random field describing a spatial variation of local tensile strength was studied. Next, the influence of the coefficient of variation of local tensile strength was analyzed. The numerical FE investigations...
-
Enhanced interfacial and mechanical performance of styrene-butadiene rubber/silica composites compatibilized by soybean oil derived silanized plasticization
PublicationSilanized plasticizer (SP) was chemically derived and synthesized from soybean oil (SBO) co-vulcanized with bis-(3-(triethoxysilyl)-propyl) tetrasulfide (TESPT) by using the sulfur-accelerated curing system. SP extended styrene-butadiene rubber (SBR)/silica composites have been studied for their improved filler dispersion through coupling interaction at the SBR/silica interface. The effect of SP on cross-link density, thermal,...
-
Comprehensive Investigation of Stoichiometry–Structure–Performance Relationships in Flexible Polyurethane Foams
PublicationPolyurethane (PU) foams are versatile materials with a broad application range. Their performance is driven by the stoichiometry of polymerization reaction, which has been investigated in several works. However, the analysis was often limited only to selected properties and compared samples differing in apparent density, significantly influencing their performance. In the bigger picture, there is still a lack of comprehensive studies...
-
Waste tire rubber devulcanization technologies: State-of-the-art, limitations and future perspectives
PublicationWaste tires management is a serious and global environmental problem. Therefore, searching for low-cost and industrial-scale applicable tire recycling methods is gaining more and more attention. Waste tire rubber is valuable source of secondary raw materials for the circular economy and current trends indicate that application of waste rubbers during manufacturing value-added products should increase in near future. Sustainable...
-
Mechanical properties of Precontraint 1202 S2 based on uniaxial tensile and creep tests
PublicationThe purpose of the paper is the estimation of the polyvinyl chloride – polyester-coated fabric (Precontraint 1202 S2) mechanical properties under uniaxial tensile tests as well as short- and long-time creep tests. The uniaxial tests are the basis of non-linear elastic description while the creep tests are used for the evaluation of the stiffness parameters in time and for the identification of the standard viscoelastic model. The...
-
FE analysis of a coupled energetic-statistical size effect in plain concrete beams with varying material properties.
PublicationThe numerical FE investigations of a coupled energetic-statistical size effect in unnotched concrete beams of similar geometry under quasi-static three point bending were performed within elasto-plasticity with non-local softening. The stochastic FE analyses were carried out with three different beam sizes. Deterministic calculations were performed with the uniform distribution of a uniaxial tensile strength. In statistical calculations...
-
Autogenous Fiber Laser Welding of 316L Austenitic and 2304 Lean Duplex Stainless Steels
PublicationThis study presents results of experimental tests on quality of dissimilar welded joints between 316L austenitic and 2304 lean duplex stainless steels, welded without ceramic backing. Fiber laser welded butt joints at a thickness of 8 mm were subjected to non‐destructive testing (visual and penetrant), destructive testing (static tensile test, bending test, and microhardness measurements) and structure observations (macro‐ and...
-
Assessment of Thermal Stresses in Asphalt Mixtures at Low Temperatures Using the Tensile Creep Test and the Bending Beam Creep Test
PublicationThermal stresses are leading factors that influence low-temperature cracking behavior of asphalt pavements. During winter, when the temperature drops to significantly low values, tensile thermal stresses develop as a result of pavement contraction. Creep test methods can be suitable for the assessment of low-temperature properties of asphalt mixtures. To evaluate the influence of creep test methods on the obtained low-temperature...
-
The effect of hybridization of fire retarded epoxy/flax-cotton fiber laminates by expanded vermiculite: Structure-property relationship study
PublicationThe study describes the hybridization of epoxy/flax-cotton (EP/FF) composites containing ammonium polyphosphate (APP) with micrometric expanded vermiculite (VMT) (1–10 wt%). The efficiency of hybridization of flame retarded epoxy/flax-cotton composites was assessed by performing static tensile and flexural strength evaluation, supplemented by impact strength measurements of the composites. Moreover, thermal and thermomechanical...
-
Limits of enhanced of macro- and meso-scale continuum models for studying size effect in concrete under tension
PublicationThe paper investigates a mechanical quasi-static size effect in concrete during splitting tension at the macro- and meso-level. In experiments, five different diameters of cylindrical concrete specimens were tested. Twodimensional plane strain finite element (FE) simulations were carried out to reproduce the experimental size effect. The size effect in experiments by Carmona et al. was also simulated. Two enhanced continuum concrete...