Search results for: ARTIFICIAL NEURAL NETWORKS (ANNS)
-
Artificial Neural Networks for Comparative Navigation
Publication -
Ship Resistance Prediction with Artificial Neural Networks
PublicationThe paper is dedicated to a new method of ship’s resistance prediction using Artificial Neural Network (ANN). In the initial stage selected ships parameters are prepared to be used as a training and validation sets. Next step is to verify several network structures and to determine parameters with the highest influence on the result resistance. Finally, other parameters expected to impact the resistance are proposed. The research utilizes...
-
Artificial Neural Networks in Microwave Components and Circuits Modeling
PublicationArtykuł dotyczy wykorzystania sztucznych sieci neuronowych (SNN) w projektowaniu i optymalizacji układów mikrofalowych.Zaprezentowano podstawowe zasady i założenia modelowania z użyciem SNN. Możliwości opisywanej metody opisano wykorzystując przykładowyprojekt anteny łatowej. Przedstawiono różne strategie modelowania układów, które wykorzystują możliwości opisywanej metody w połączeniu zwiedzą mikrofalową. Porównano również dokładność...
-
A MODEL FOR FORECASTING PM10 LEVELS WITH THE USE OF ARTIFICIAL NEURAL NETWORKS
PublicationThis work presents a method of forecasting the level of PM10 with the use of artificial neural networks. Current level of particulate matter and meteorological data was taken into account in the construction of the model (checked the correlation of each variable and the future level of PM10), and unidirectional networks were used to implement it due to their ease of learning. Then, the configuration of the network (built on the...
-
USING ARTIFICIAL NEURAL NETWORKS FOR PREDICTING SHIP FUEL CONSUMPTION
PublicationIn marine vessel operations, fuel costs are major operating costs which affect the overall profitability of the maritime transport industry. The effective enhancement of using ship fuel will increase ship operation efficiency. Since ship fuel consumption depends on different factors, such as weather, cruising condition, cargo load, and engine condition, it is difficult to assess the fuel consumption pattern for various types...
-
Automatic singing quality recognition employing artificial neural networks
PublicationCelem artykułu jest udowodnienie możliwości automatycznej oceny jakości technicznej głosów śpiewaczych. Pokrótce zaprezentowano w nim stworzoną bazę danych głosów śpiewaczych oraz zaimplementowane parametry. Przy pomocy sztucznych sieci neuronowych zaprojektowano system decyzyjny, który oceniono w pięciostopniowej skali jakość techniczną głosu. Przy pomocy metod statystycznych udowodniono, że wyniki generowane przez ten system...
-
Prediction of antimicrobial activity of imidazole derivatives by artificial neural networks
Publication -
Application of Artificial Neural Networks in Investigations of Steam Turbine Cascades
PublicationZaprezentowano wyniki badań numerycznych zastosowania sieci neuronowych przy obliczeniach przepływów w palisadach turbin parowych. Na podstawie uzyskanych wyników wykazano, że sieci neuronowe mogą być używane do szacowania przestrzennego rozkładu parametrów przepływu, takich jak entalpia, entropia, ciśnienie czy prędkość czynnika w kanale przepływowym. Omówiono również zastosowania tego typu metod przy projektowaniu palisad, stopni...
-
Forecasting of currency exchange rates using artificial neural networks
PublicationW rozdziale tym autor przedstawił wyniki swoich badań nad wykorzystaniem sztucznych sieci neuronowych do prognozowania kursu walut (na przykładzie pary walutowej PLN-USD).Głównym celem badań było porównanie skuteczności przewidywania kursu złotówki w latach 1997 - 2005 przy pomocy różnych rodzajów sieci neuronowych.
-
Application of Artificial Neural Networks to Predict Insulation Properties of Lightweight Concrete
PublicationPredicting the properties of concrete before its design and application process allows for refining and optimizing its composition. However, the properties of lightweight concrete are much harder to predict than those of normal weight concrete, especially if the forecast concerns the insulating properties of concrete with artificial lightweight aggregate (LWA). It is possible to use porous aggregates and precisely modify the composition...
-
Modeling of Surface Roughness in Honing Processes by UsingFuzzy Artificial Neural Networks
PublicationHoning processes are abrasive machining processes which are commonly employed to improve the surface of manufactured parts such as hydraulic or combustion engine cylinders. These processes can be employed to obtain a cross-hatched pattern on the internal surfaces of cylinders. In this present study, fuzzy artificial neural networks are employed for modeling surface roughness parameters obtained in finishing honing operations. As...
-
Applying artificial neural networks for modelling ship speed and fuel consumption
PublicationThis paper deals with modelling ship speed and fuel consumption using artificial neural network (ANN) techniques. These tools allowed us to develop ANN models that can be used for predicting both the fuel consumption and the travel time to the destination for commanded outputs (the ship driveline shaft speed and the propeller pitch) selected by the ship operator. In these cases, due to variable environmental conditions, making...
-
The concept of application of artificial neural networks for cultivation controlof cartilages in bioreactors.
PublicationNowym elementem niniejszej pracy jest omówienie problemów związanych z możliwością sterowania parametrami hydrodynamicznymi hodowanej w bioreaktorze chrząstki stawowej przy wykorzystaniu sztucznych sieci neuronowych. Przedstawiona została architektura strategii sterowania hodowlą tkanki z zastosowaniem tych sieci.
-
Processing of musical data employing rough sets and artificial neural networks
PublicationArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
Processing of musical data employing rough sets and artificial neural networks
PublicationArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
Analysis of electrical patterns activity in artificial multi-stable neural networks
Publication -
Artificial Neural Networks for Prediction of Antibacterial Activity in Series of Imidazole Derivatives
Publication -
Supply current signal and artificial neural networks in the induction motor bearings diagnostics
PublicationThis paper contains research results of the diagnostics of induction motor bearings based on measurement of the supply current with usage of artificial neural networks. Bearing failure amount is greater than 40% of all engine failures, which makes their damage-free operation crucial. Tests were performed on motors with intentionally made bearings defects. Chapter 2 introduces the concept of artificial neural networks. It presents...
-
Predicting the impact of traffic–induced vibrations on buildings using artificial neural networks
PublicationTraffic–induced vibrations may constitute a considerable load to a building, cause cracking of plaster, cracks in load–bearing elements or even a global structural collapse of the whole structure [1-4]. Vibrations measurements of real structures are costly and laborious, not justified in all cases. The aim of the paper is to create an original algorithm, to predict the negative dynamic impact on the examined residential building...
-
Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening
PublicationBeta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural...
-
Heavy duty vehicle fuel consumption modelling using artificial neural networks
PublicationIn this paper an artificial neural network (ANN) approach to modelling fuel consumption of heavy duty vehicles is presented. The proposed method uses easy accessible data collected via CAN bus of the truck. As a benchmark a conventional method, which is based on polynomial regression model, is used. The fuel consumption is measured in two different tests, performed by using a unique test bench to apply the load to the engine. Firstly,...
-
Self-organizing Artificial Neural Networks into Hydrographic Big Data Reduction Process
Publication -
Artificial Neural Networks in Classification of Steel Grades Based on Non-Destructive Tests
Publication -
Designing the Composition of Cement Stabilized Rammed Earth Using Artificial Neural Networks
Publication -
The Influence of Input Data Standardization Method on Prediction Accuracy of Artificial Neural Networks
Publication -
Enhancing Renal Tumor Detection: Leveraging Artificial Neural Networks in Computed Tomography Analysis
PublicationRenal cell carcinoma is one of the most common cancers in Europe, with a total incidence rate of 18.4 cases per 100 000 population. There is currently significant overdiagnosis (11% to 30.9%) at times of planned surgery based on radiological studies. The purpose of this study was to create an artificial neural network (ANN) solution based on computed tomography (CT) images as an additional tool to improve the differentiation of...
-
Dynamically positioned ship steering making use of backstepping method and artificial neural networks
PublicationThe article discusses the issue of designing a dynamic ship positioning system making use of the adaptive vectorial backstepping method and RBF type arti cial neural networks. In the article, the backstepping controller is used to determine control laws and neural network weight adaptation laws. e arti cial neural network is applied at each time instant to approximate nonlinear functions containing parametric uncertainties....
-
Application of artificial neural networks (ANN) as multiple degradation classifiers in thermal and flow diagnostics
PublicationPrzedyskutowano problem zwiększenia dokładności rozpoznawania wielokrotnych degradacji eksploatacyjnych urządzeń składowych dużych obiektów energetycznych. Zastosowani sieć neuronową (SSN) o skokowych funkcjach przejścia. Sprawdzono możliwości przyspieszenia treningu sieci neuronowych. Zastosowano modułową metodę budowy SSN, polegającą na dedykowaniu pojedynczej sieci do rozpoznawania tylko jednego typu degradacji.
-
Accidental wow defect evaluation using sinusoidal analysis enhanced by artificial neural networks
PublicationArtykuł przedstawia metodę do wyznaczania charakterystyki pasożytniczych modulacji częstotliwości (kołysanie) obecnych w archiwalnych nagraniach dźwiękowych. Prezentowane podejście wykorzystuje śledzenie zmian sinusoidalnych komponentów dźwięku które odzwierciedlają przebieg kołysania. Analiza sinusoidalna wykorzystana jest do ekstrakcji składowych tonalnych ze zniekształconych nagrań dźwiękowych. Dodatkowo, w celu zwiększenia...
-
Determination of Odour Interactions in Gaseous Mixtures Using Electronic Nose Methods with Artificial Neural Networks
PublicationThis paper presents application of an electronic nose prototype comprised of eight sensors, five TGS-type sensors, two electrochemical sensors and one PID-type sensor, to identify odour interaction phenomenon in two-, three-, four- and five-component odorous mixtures. Typical chemical compounds, such as toluene, acetone, triethylamine, α-pinene and n-butanol, present near municipal landfills and sewage treatment plants were subjected...
-
Heavy Duty Vehicle Fuel Consumption Modelling Based on Exploitation Data by Using Artificial Neural Networks
PublicationOne of the ways to improve the fuel economy of heavy duty trucks is to operate the combustion engine in its most efficient operating points. To do that, a mathematical model of the engine is required, which shows the relations between engine speed, torque and fuel consumption in transient states. In this paper, easy accessible exploitation data collected via CAN bus of the heavy duty truck were used to obtain a model of a diesel...
-
Comparison of selected clustering algorithms of raw data obtained by interferometric methods using artificial neural networks
Publication -
Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks
PublicationLightweight concrete (LWC) is a group of cement composites of the defined physical, mechanical, and chemical performance. The methods of designing the composition of LWC with the assumed density and compressive strength are used most commonly. The purpose of using LWC is the reduction of the structure’s weight, as well as the reduction of thermal conductivity index. The highest possible strength, durability and low thermal conductivity...
-
Field Calibration of Low-Cost Particulate Matter Sensors Using Artificial Neural Networks and Affine Response Correction
PublicationDue to detrimental effects of atmospheric particulate matter (PM), its accurate monitoring is of paramount importance, especially in densely populated urban areas. However, precise measurement of PM levels requires expensive and sophisticated equipment. Although low-cost alternatives are gaining popularity, their reliability is questionable, attributed to sensitivity to environmental conditions, inherent instability, and manufacturing...
-
The use of fast molecular descriptors and artificial neural networks approach in organochlorine compounds electron ionization mass spectra classification
PublicationDeveloping of theoretical tools can be very helpful for supporting new pollutant detection. Nowadays, a combination of mass spectrometry and chromatographic techniques are the most basic environmental monitoring methods. In this paper, two organochlorine compound mass spectra classification systems were proposed. The classification models were developed within the framework of artificial neural networks (ANNs) and fast 1D and...
-
Modelling relation between oxidation resistance and tribological properties of non-toxic lubricants with the use of artificial neural networks
Publication -
Artificial Neural Networks as an architectural design tool- generating new detail forms based on the Roman Corinthian order capital
PublicationThe following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital....
-
Artificial neural networks as a tool for selecting the parameters of prototypical under sleeper pads produced from recycled rubber granulate
Publication -
The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process
PublicationThis paper presents the application of artificial neural networks and decision trees for the prediction of odor properties of post-fermentation sludge from a biological-mechanical wastewater treatment plant. The input parameters were concentrations of popular compounds present in the sludge, such as toluene, p-xylene, and p-cresol, and process parameters including the concentration of volatile fatty acids, pH, and alkalinity in...
-
Modeling and optimizing the removal of cadmium by Sinapis alba L. from contaminated soil via Response Surface Methodology and Artificial Neural Networks during assisted phytoremediation with sewage sludge
Publication -
Artificial Neural Networks in Engineering Conference
Conferences -
European Symposium on Artificial Neural Networks
Conferences -
International Conference on Artificial Neural Networks
Conferences -
Conference on Artificial Neural Networks and Expert systems
Conferences -
International Conference on Artificial Neural Networks and Genetic Algorithms
Conferences -
International Work-Conference on Artificial and Natural Neural Networks
Conferences -
Multi-Camera Vehicle Tracking Using Local Image Features and Neural Networks
PublicationA method for tracking moving objects crossing fields of view of multiple cameras is presented. The algorithm utilizes Artificial Neural Networks (ANNs). Each ANN is trained to recognize images of one moving object acquired by a single camera. Local image features calculated in the vicinity of automatically detected interest points are used as object image parameters. Next, ANNs are employed to identify the same objects captured...
-
Olgun Aydin dr
PeopleOlgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Principal Machine Learning Engineer in Nike, and works as Assistant Professor in Gdansk University of Technology in Poland. Dr. Aydin is part of editorial board of "Journal of Artificial Intelligence and Data Science" Dr. Aydin served as Vice-Chairman of Why R? Foundation and is member of Polish Artificial Intelligence Society. Olgun is...
-
Bożena Kostek prof. dr hab. inż.
People -
Comparing the Effectiveness of ANNs and SVMs in Forecasting the Impact of Traffic-Induced Vibrations on Building
PublicationTraffic - induced vibrations may cause damage to structural elements and may even lead to structural collapse. The aim of the article is to compare the effectiveness of algorithms in forecasting the impact of vibrations on buildings using the Machine Learning (ML) methods. The paper presents two alternative approaches by using Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). Factors that may affect traffic-induced...