Filters
total: 21068
-
Catalog
- Publications 14731 available results
- Journals 432 available results
- Conferences 263 available results
- Publishing Houses 1 available results
- People 361 available results
- Inventions 24 available results
- Projects 63 available results
- Laboratories 4 available results
- Research Teams 1 available results
- Research Equipment 7 available results
- e-Learning Courses 430 available results
- Events 36 available results
- Open Research Data 4715 available results
displaying 1000 best results Help
Search results for: SYSTEM TESTING , SENSITIVITY , COMPUTATIONAL MODELING , NEURAL NETWORKS , OBJECT DETECTION , DISTORTION , DATA MODELS
-
Towards Designing an Innovative Industrial Fan: Developing Regression and Neural Models Based on Remote Mass Measurements
PublicationThis article presents the process of the construction and testing a remote, fully autonomous system for measuring the operational parameters of fans. The measurement results obtained made it possible to create and verify mathematical models using linear regression and neural networks. The process was implemented as part of the first stage of an innovative project. The article presents detailed steps of constructing a system to...
-
Use of Neural Networks in Diagnostics of Rolling-Element Bearing of the Induction Motor
PublicationBearing defect is statistically the most frequent cause of an induction motor fault. The research described in the paper utilized the phenomenon of the current change in the induction motor with bearing defect. Methods based on the analysis of the supplying current are particularly useful when it is impossible to install diagnostic devices directly on the motor. The presented method of rolling-element bearing diagnostics used indirect...
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublicationIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
Moving object tracking algorithm evaluation in autonomous surveillance system
PublicationResults of evaluation of video object tracking algorithm being a part of an autonomous surveillance system are presented. The algorithm was investigated employing a set of benchmarks recorded locally. The precision of object detection, evaluated with such metrics as fragmentation, object area recall and object precision, is in focus. The experiments aimed at examining the detection quality using various object detection algorithm...
-
Modeling of Performance, Reliability and Energy Efficiency in Large-Scale Computational Environment
PublicationLarge scale of complexity of distributed computational systems imposes special challanges for prediction of quality in such systems.Existing quality models for lower-scale systems include functionality,performance,reliability,flexibility and usability.Among these attributes,performance and reliability have a particular significance to the large-scale systems computing quality modeling due to their strong dependence on the system...
-
Modeling of Performance, Reliability and Energy Efficiency in Large-Scale Computational Environments
PublicationLarge scale of complexity of distributed computational systems imposes special challenges for prediction of quality in such systems. Existing quality models for lower-scale systems include functionality, performance, reliability, flexibility and usability. Among these attributes, performance and reliability have a particular significance to the large-scale systems computing quality modeling due to their strong dependence on the...
-
AAM toolkit: a system for visual object appearance modeling
PublicationAktywne modele wyglądu (AAM) mogą być traktowane jako zaawansowana metoda analizy informacji multimedialnych, pozwalająca na lokalizowanie i rozpoznawanie obiektów w obrazach statycznych i sekwencjach wideo. Pomimo tego że ukazało się wiele publikacji dotyczących AAM, przejście od koncepcji teoretycznych do działającej implementacji stanowi nadal duże wyzwanie. W pracy przedstawiono przygotowany przez autorów pakiet oprogramowania...
-
Deep neural networks approach to skin lesions classification — A comparative analysis
PublicationThe paper presents the results of research on the use of Deep Neural Networks (DNN) for automatic classification of the skin lesions. The authors have focused on the most effective kind of DNNs for image processing, namely Convolutional Neural Networks (CNN). In particular, three kinds of CNN were analyzed: VGG19, Residual Networks (ResNet) and the hybrid of VGG19 CNN with the Support Vector Machine (SVM). The research was carried...
-
System for characterisation and multidimensional imaging of seafloor using multibeam sonar data
PublicationMultibeam sonars are widely used in applications like high resolution bathymetry measurements, underwater object detection and imaging, etc. Also, they are the promising tool in seafloor characterisation and classification, having several advantages over conventional single beam echosounders. The proposed approach to seafloor classification relies on the combined use of three different techniques. In each of them, a set of descriptors...
-
Traffic Modeling in IMS-based NGN Networks
PublicationIn the modern world the need for accurate and quickly delivered information is becoming more and more essential. In order to fulfill these requirements, next generation telecommunication networks should be fast introduced and correctly dimensioned. For this reason proper traffic models must be identified, which is the subject of this paper. In the paper standardization of IMS (IP Multimedia Subsystem) concept and IMS-based NGN...
-
Designing of an effective structure of system for the maintenance of a technical object with the using information from an artificial neural network
Publication -
Neural networks based NARX models in nonlinear adaptive control
Publication -
Performance Analysis of Convolutional Neural Networks on Embedded Systems
PublicationMachine learning is no longer confined to cloud and high-end server systems and has been successfully deployed on devices that are part of Internet of Things. This paper presents the analysis of performance of convolutional neural networks deployed on an ARM microcontroller. Inference time is measured for different core frequencies, with and without DSP instructions and disabled access to cache. Networks use both real-valued and...
-
Enhancing Renal Tumor Detection: Leveraging Artificial Neural Networks in Computed Tomography Analysis
PublicationRenal cell carcinoma is one of the most common cancers in Europe, with a total incidence rate of 18.4 cases per 100 000 population. There is currently significant overdiagnosis (11% to 30.9%) at times of planned surgery based on radiological studies. The purpose of this study was to create an artificial neural network (ANN) solution based on computed tomography (CT) images as an additional tool to improve the differentiation of...
-
Integration of thermographic data with the 3D object model
PublicationThe aim of the paper is to present new method for merging the 3D model data of the measured object with thermograms. Our technique is based on the combination of visual 3D imaging technique and thermal imaging technique, which maps the 2D thermograms on to 3D anatomical mesh model. The combination of these imaging modalities allows the generation of combined 3D and thermal data from which thermal signatures can be verified and...
-
Electromagnetic Modeling of Microstrip Elements Aided with Artificial Neural Network
PublicationThe electromagnetic modeling principle aided withartificial neural network to designing the microwave widebandelements/networks prepared in microstrip technology is proposedin the paper. It is assumed that the complete information is knownfor the prototype design which is prepared on certain substratewith certain thickness and electric permittivity. The longitudinaland transversal dimensions of new design...
-
The Effectiveness of Using a Pretrained Deep Learning Neural Networks for Object Classification in Underwater Video
Publication -
Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio
PublicationThe purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...
-
Modeling the effect of parasitic capacitances on the dead-time distortion in multilevel NPC inverters
PublicationA simple model is derived and verified for evaluating the effect of parasitic capacitances on the dead-time related voltage distortion in multilevel NPC voltage source inverters. The model permits well-defined and precise compensation of dead-time distortion, exhibiting meaningful improvement on compensation methods neglecting the effects of parasitic capacitances. A simple formula is given for evaluating the capacitances as serial/parallel...
-
Modular machine learning system for training object detection algorithms on a supercomputer
PublicationW pracy zaprezentowano architekturę systemu służącego do tworzenia algorytmów wykorzystujących metodę AdaBoost i służących do wykrywania obiektów (np. twarzy) na obrazach. System został podzielony na wyspecjalizowane moduły w celu umożliwienia łatwej rozbudowy i efektywnego zrównoleglenia implementacji przeznaczonej dla superkomputera. Na przykład, system może być rozszerzony o nowe cechy i algorytmy ich ekstrakcji bez konieczności...
-
Toward Intelligent Vehicle Intrusion Detection Using the Neural Knowledge DNA
PublicationIn this paper, we propose a novel intrusion detection approach using past driving experience and the neural knowledge DNA for in-vehicle information system security. The neural knowledge DNA is a novel knowledge representation method designed to support discovering, storing, reusing, improving, and sharing knowledge among machines and computing systems. We examine our approach for classifying malicious vehicle control commands...
-
Spiral Search Grasshopper Features Selection with VGG19-ResNet50 for Remote Sensing Object Detection
PublicationRemote sensing object detection plays a major role in satellite imaging and is required in various scenarios such as transportation, forestry, and the ocean. Deep learning techniques provide efficient performance in remote sensing object detection. The existing techniques have the limitations of data imbalance, overfitting, and lower efficiency in detecting small objects. This research proposes the spiral search grasshopper (SSG)...
-
Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening
PublicationBeta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural...
-
Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction
PublicationThis work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...
-
Multi-Camera Vehicle Tracking Using Local Image Features and Neural Networks
PublicationA method for tracking moving objects crossing fields of view of multiple cameras is presented. The algorithm utilizes Artificial Neural Networks (ANNs). Each ANN is trained to recognize images of one moving object acquired by a single camera. Local image features calculated in the vicinity of automatically detected interest points are used as object image parameters. Next, ANNs are employed to identify the same objects captured...
-
Chosen aspects of skeletal system modeling: Numerical solid and shell models of femur part
PublicationThe purpose of this paper is to present a new method of femur part modeling by using the finite element method. This method treats a femur part as a system composed of cortical and trabecular bone. For the purpose of determining a proper shape of femur part model there were created three models: a) the first one describes a femur part as a solid structure; b) the second one describes a femur part as a connection of cortical bone...
-
Sign Language Recognition Using Convolution Neural Networks
PublicationThe objective of this work was to provide an app that can automatically recognize hand gestures from the American Sign Language (ASL) on mobile devices. The app employs a model based on Convolutional Neural Network (CNN) for gesture classification. Various CNN architectures and optimization strategies suitable for devices with limited resources were examined. InceptionV3 and VGG-19 models exhibited negligibly higher accuracy than...
-
Extended Hopfield models of neural networks for combinatorial multiobjective optimization problems
Publication -
Efficient knowledge-based optimization of expensive computational models using adaptive response correction
PublicationComputer simulation has become an indispensable tool in engineering design as they allow an accurate evaluation of the system performance. This is critical in order to carry out the design process in a reliable manner without costly prototyping and physical measurements. However, high-fidelity computer simulations are computationally expensive. This turns to be a fundamental bottleneck when it comes to design automation using numerical...
-
Performance evaulation of video object tracking algorithm in autonomous surveillance system
PublicationResults of performance evaluation of a video object tracking algorithm are presented. The method of moving objects detection and tracking is based on background modelling with mixtures of Gaussians and Kalman filters. An emphasis is put on algorithm's efficiency with regards to its settings. Utilized methods of performance evaluation based on comparison of algorithm output to manually prepared reference data are introduced. The...
-
Performance evaluation of video object tracking algorithm in autonomous surveillance system
PublicationResults of performance evaluation of a video object tracking algorithm are presented. The method of moving objects detection and tracking is based on background modelling with mixtures of Gaussians and Kalman filters. An emphasis is put on algorithm's efficiency with regards to its settings. Utilized methods of performance evaluation based on comparison of algorithm output to manually prepared reference data are introduced. The...
-
Supply current signal and artificial neural networks in the induction motor bearings diagnostics
PublicationThis paper contains research results of the diagnostics of induction motor bearings based on measurement of the supply current with usage of artificial neural networks. Bearing failure amount is greater than 40% of all engine failures, which makes their damage-free operation crucial. Tests were performed on motors with intentionally made bearings defects. Chapter 2 introduces the concept of artificial neural networks. It presents...
-
Modeling Object Oriented Systems via Controlled English Verbalization of Description Logic
PublicationThe need for formal methods for Object Oriented (OO) systems resulted in methods like UML and Lepus3 that are de-facto graphical languages equipped with formal tools that are able to handle the design of OO systems. However, they lack precise semantics which might lead to problems, such as inconsistencies or redundancies. On the other hand, to our knowledge, there is no approach that allows one to understand and follow the requirements...
-
An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks
PublicationIn this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent...
-
Jerzy Konorski dr hab. inż.
PeopleJerzy Konorski received his M. Sc. degree in telecommunications from Gdansk University of Technology, Poland, and his Ph. D. degree in computer science from the Polish Academy of Sciences, Warsaw, Poland. In 2007, he defended his D. Sc. thesis at the Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology. He has authored over 150 papers, led scientific projects funded by the European Union,...
-
Modeling nutrient removal and energy consumption in an advanced activated sludge system under uncertainty
PublicationActivated sludge models are widely used to simulate, optimize and control performance of wastewater treatment plants (WWTP). For simulation of nutrient removal and energy consumption, kinetic parameters would need to be estimated, which requires an extensive measurement campaign. In this study, a novel methodology is proposed for modeling the performance and energy consumption of a biological nutrient removal activated sludge system...
-
USING ARTIFICIAL NEURAL NETWORKS FOR PREDICTING SHIP FUEL CONSUMPTION
PublicationIn marine vessel operations, fuel costs are major operating costs which affect the overall profitability of the maritime transport industry. The effective enhancement of using ship fuel will increase ship operation efficiency. Since ship fuel consumption depends on different factors, such as weather, cruising condition, cargo load, and engine condition, it is difficult to assess the fuel consumption pattern for various types...
-
Fundamentals of Data-Driven Surrogate Modeling
PublicationThe primary topic of the book is surrogate modeling and surrogate-based design of high-frequency structures. The purpose of the first two chapters is to provide the reader with an overview of the two most important classes of modeling methods, data-driven (or approx-imation), as well as physics-based ones. These are covered in Chap-ters 1 and 2, respectively. The remaining parts of the book give an exposition of the specific aspects...
-
Automatic detection of abandoned luggage employing a dual camera system
PublicationA system for automatic detection of events using a system of fixed and PTZ (pan-tilt-zoom) cameras is described. Images from the fixed camera are analyzed by means of object detection and tracking. Event detection system uses a set of rules to analyze data on the tracked moving objects and to detect defined events. A PTZ camera is used to obtain a detailed view of a selected object. A procedure for conversion between the pixel...
-
Visual Object Tracking System Employing Fixed and PTZ Cameras
PublicationThe paper presents a video monitoring system utilizing fixed and PTZ cameras for tracking of moving objects. First type of camera provides image for background modelling, being employed for foreground objects localization. Estimated objects locations are then utilised for steering of PTZ cameras when observing targeted objects with high close-ups. Objects are classified into several classes, then basic event detection is being...
-
A MODEL FOR FORECASTING PM10 LEVELS WITH THE USE OF ARTIFICIAL NEURAL NETWORKS
PublicationThis work presents a method of forecasting the level of PM10 with the use of artificial neural networks. Current level of particulate matter and meteorological data was taken into account in the construction of the model (checked the correlation of each variable and the future level of PM10), and unidirectional networks were used to implement it due to their ease of learning. Then, the configuration of the network (built on the...
-
A coarse‐grained approach to NMR ‐data‐assisted modeling of protein structures
PublicationThe ESCASA algorithm for analytical estimation of proton positions from coarse-grained geometry developed in our recent work has been implemented in modeling protein structures with the highly coarse-grained UNRES model of polypeptide chains (two sites per residue) and nuclear magnetic resonance (NMR) data. A penalty function with the shape of intersecting gorges was applied to treat ambiguous distance restraints, which automatically...
-
POLYMER TESTING
Journals -
Explainable AI for Inspecting Adversarial Attacks on Deep Neural Networks
PublicationDeep Neural Networks (DNN) are state of the art algorithms for image classification. Although significant achievements and perspectives, deep neural networks and accompanying learning algorithms have some important challenges to tackle. However, it appears that it is relatively easy to attack and fool with well-designed input samples called adversarial examples. Adversarial perturba-tions are unnoticeable for humans. Such attacks...
-
Sylwester Kaczmarek dr hab. inż.
PeopleSylwester Kaczmarek received his M.Sc in electronics engineering, Ph.D. and D.Sc. in switching and teletraffic science from the Gdansk University of Technology, Gdansk, Poland, in 1972, 1981 and 1994, respectively. His research interests include: IP QoS and GMPLS and SDN networks, switching, QoS routing, teletraffic, multimedia services and quality of services. Currently, his research is focused on developing and applicability...
-
Processing of musical data employing rough sets and artificial neural networks
PublicationArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
Processing of musical data employing rough sets and artificial neural networks
PublicationArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks
PublicationIn this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....
-
Application of Feed Forward Neural Networks for Modeling of Heat Transfer Coefficient During Flow Condensation for Low and High Values of Saturation Temperatur
PublicationMost of the literature models for condensation heat transfer prediction are based on specific experimental parameters and are not general in nature for applications to fluids and non-experimental thermodynamic conditions. Nearly all correlations are created to predict data in normal HVAC conditions below 40°C. High temperature heat pumps operate at much higher parameters. This paper aims to create a general model for the calculation...
-
Processing of LiDAR and Multibeam Sonar Point Cloud Data for 3D Surface and Object Shape Reconstruction
PublicationUnorganised point cloud dataset, as a transitional data model in several applications, usually contains a considerable amount of undesirable irregularities, such as strong variability of local point density, missing data, overlapping points and noise caused by scattering characteristics of the environment. For these reasons, further processing of such data, e.g. for construction of higher order geometric models of the topography...