Filters
total: 2505
-
Catalog
- Publications 2044 available results
- Journals 57 available results
- Conferences 40 available results
- Publishing Houses 1 available results
- People 72 available results
- Projects 6 available results
- Research Equipment 1 available results
- e-Learning Courses 19 available results
- Events 3 available results
- Open Research Data 262 available results
displaying 1000 best results Help
Search results for: 1D%20CONVOLUTIONAL%20NEURAL%20NETWORK
-
EPILEPTIC BEHAVIOR WITH A DISTINGUISHED PREICTAL PERIOD IN A LARGE-SCALE NEURAL NETWORK MODEL
PublicationWe present a neural network model capable of reproducing focal epileptic behavior. An important property of our model is the distinguished preictal state. This novel feature may shed light on the pathologi-cal mechanisms of seizure generation and, in perspective, help develop new therapeutic strategies to manage refractory partial epilepsy.
-
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublicationThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
Adaptive Hyperparameter Tuning within Neural Network-based Efficient Global Optimization
PublicationIn this paper, adaptive hyperparameter optimization (HPO) strategies within the efficient global optimization (EGO) with neural network (NN)-based prediction and uncertainty (EGONN) algorithm are proposed. These strategies utilize Bayesian optimization and multiarmed bandit optimization to tune HPs during the sequential sampling process either every iteration (HPO-1itr) or every five iterations (HPO-5itr). Through experiments using...
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublicationThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
Comparison of Selected Neural Network Models Used for Automatic Liver Tumor Segmentation
PublicationAutomatic and accurate segmentation of liver tumors is crucial for the diagnosis and treatment of hepatocellular carcinoma or metastases. However, the task remains challenging due to imprecise boundaries and significant variations in the shape, size, and location of tumors. The present study focuses on tumor segmentation as a more critical aspect from a medical perspective, compared to liver parenchyma segmentation, which is the...
-
Development of a tropical disease diagnosis system using artificial neural network and GIS
PublicationExpert systems for diagnosis of tropical diseases have been developed and implemented for over a decade with varying degrees of success. While the recent introduction of artificial neural networks has helped to improve the diagnosis accuracy of such systems, this aspect is still negatively affected by the number of supported diseases. A large number of supported diseases usually corresponds to a high number of overlapping symptoms,...
-
Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors
PublicationIn the paper we provide thorough benchmarking of deep neural network (DNN) training on modern multi- and many-core Intel processors in order to assess performance differences for various deep learning as well as parallel computing parameters. We present performance of DNN training for Alexnet, Googlenet, Googlenet_v2 as well as Resnet_50 for various engines used by the deep learning framework, for various batch sizes. Furthermore,...
-
Application of fuzzy neural network for supporting measurements and control in a wastewater treatment plant
PublicationOczyszczanie ścieków jest jednym z ważniejszych aspektów ochrony środowiska. Nowoczesne systemy kontroli w oczyszczalniach ścieków pozwalają na poprawę jakości procesu oczyszczania redukując jednocześnie koszty. Systemy kontroli i optymalizacji jakie odkilku lat opracowuje się dla oczyszczalni ścieków, bazują zazwyczaj na skomplikowanych modelach matematycznych. Kluczowym problemem w zastosowaniu tych systemów jest duża liczba...
-
Electrochemical performance of MOF-5 derived carbon nanocomposites with 1D, 2D and 3D carbon structures
Publication -
Impact of Energy Slope Averaging Methods on Numerical Solution of 1D Steady Gradually Varied Flow
PublicationIn this paper, energy slope averaging in the one-dimensional steady gradually varied flow model is considered. For this purpose, different methods of averaging the energy slope between cross-sections are used. The most popular are arithmetic, geometric, harmonic and hydraulic means. However, from the formal viewpoint, the application of different averaging formulas results in different numerical integration formulas. This study...
-
Artificial Neural Network in Forecasting the Churn Phenomena Among Costumers of IT and Power Supply Services
PublicationThis paper presents an attempt to use an artificial neural network to investigate the churn phenomenon among the customers of a telecommunications operator. An attempt was made to create a data model based on the customer lifetime value (CLV) rather than on activity alone. A multilayered artificial neural network was used for the experiments. The results yielded a 99% successful identification rate for customers in no danger of...
-
APPLICATION OF STATISTICAL FEATURES AND MULTILAYER NEURAL NETWORK TO AUTOMATIC DIAGNOSIS OF ARRHYTHMIA BY ECG SIGNALS
PublicationAbnormal electrical activity of heart can produce a cardiac arrhythmia. The electrocardiogram (ECG) is a non-invasive technique which is used as a diagnostic tool for cardiac diseases. Non-stationarity and irregu- larity of heartbeat signal imposes many difficulties to clinicians (e.g., in the case of myocardial infarction arrhythmia). Fortunately, signal processing algorithms can expose hidden information within ECG signal contaminated...
-
Optical Sensor Based Gestures Inference Using Recurrent Neural Network in Mobile Conditions
PublicationIn this paper the implementation of recurrent neural network models for hand gesture recognition on edge devices was performed. The models were trained with 27 hand gestures recorded with the use of a linear optical sensor consisting of 8 photodiodes and 4 LEDs. Different models, trained off-line, were tested in terms of different network topologies (different number of neurons and layers) and different effective sampling frequency...
-
Fetal Brain Imaging: A Composite Neural Network Approach for Keyframe Detection in Ultrasound Videos
Publication -
Taking decisions in the diagnostic intelligent systems on the basis information from an artificial neural network
Publication -
Artificial Neural Network (ANN)-Based Voltage Stability Prediction of Test Microgrid Grid
Publication -
TOXIC GASES IDENTIFICATION USING SINGLE ELECTROCATALYTIC SENSOR RESPONSES AND ARTIFICIAL NEURAL NETWORK
PublicationThe need for precise detection of toxic gases drives development of new gas sensors structures and methods of processing the output signals from the sensors. In literature, artificial neural networks are considered as one of the most effective tool for the analysis of gas sensors or sensors arrays responses. In this paper a method of toxic gas components identification using a electrocatalytic gas sensor as a detector and an artificial...
-
Evolving neural network as a decision support system — Controller for a game of “2048” case study
PublicationThe paper proposes an approach to designing the neuro-genetic self-learning decision support system. The system is based on neural networks being adaptively learned by evolutionary mechanism, forming an evolved neural network. Presented learning algorithm enables for a selection of the neural network structure by establishing or removing of connections between the neurons, and then for a finding the beast suited values of the network...
-
An application of neural network for Structural Health Monitoring of an adaptive wing with an array of FBG sensors
PublicationW pracy przedstwiono możliwości zastoswania sieci czujników FBG i sztucznych sieci neuronowych do detekcji uszkodzeń w poszyciu adaptacyjnego skrzydła.
-
Neural network based control system architecture proposal for underwatership hull cleaning robot.
PublicationPrzedstawiono model matematyczny podwodnej głowicy roboczej, oraz określono metodę jej pozycjonowania i orientacji w lokalnym środowisku. Zaproponowano architekturę układu sterowania, opartego na bazie sieci neuronowych, za pomocą którego można sterować podwodnym robotem, przeznaczonym do czyszczenia burt statku.
-
Neural network based algorithm for hand gesture detection in a low-cost microprocessor applications
PublicationIn this paper the simple architecture of neural network for hand gesture classification was presented. The network classifies the previously calculated parameters of EMG signals. The main goal of this project was to develop simple solution that is not computationally complex and can be implemented on microprocessors in low-cost 3D printed prosthetic arms. As the part of conducted research the data set EMG signals corresponding...
-
Predicting Ice Phenomena in a River Using the Artificial Neural Network and Extreme Gradient Boosting
PublicationForecasting ice phenomena in river systems is of great importance because these phenomena are a fundamental part of the hydrological regime. Due to the stochasticity of ice phenomena, their prediction is a difficult process, especially when data sets are sparse or incomplete. In this study, two machine learning models—Multilayer Perceptron Neural Network (MLPNN) and Extreme Gradient Boosting (XGBoost)—were developed to predict...
-
An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes
PublicationA problem related to the development of algorithms designed to find the structure of artificial neural network used for behavioural (black-box) modelling of selected dynamic processes has been addressed in this paper. The research has included four original proposals of algorithms dedicated to neural network architecture search. Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and...
-
Selection of an artificial pre-training neural network for the classification of inland vessels based on their images
PublicationArtificial neural networks (ANN) are the most commonly used algorithms for image classification problems. An image classifier takes an image or video as input and classifies it into one of the possible categories that it was trained to identify. They are applied in various areas such as security, defense, healthcare, biology, forensics, communication, etc. There is no need to create one’s own ANN because there are several pre-trained...
-
Design and Analysis of Artificial Neural Network (ANN) Models for Achieving Self-Sustainability in Sanitation
PublicationThe present study investigates the potential of using fecal ash as an adsorbent and demonstrates a self-sustaining, optimized approach for urea recovery from wastewater streams. Fecal ash was prepared by heating synthetic feces to 500 °C and then processing it as an adsorbent for urea adsorption from synthetic urine. Since this adsorption approach based on fecal ash is a promising alternative for wastewater treatment, it increases...
-
Dataset Related Experimental Investigation of Chess Position Evaluation Using a Deep Neural Network
PublicationThe idea of training Articial Neural Networks to evaluate chess positions has been widely explored in the last ten years. In this paper we investigated dataset impact on chess position evaluation. We created two datasets with over 1.6 million unique chess positions each. In one of those we also included randomly generated positions resulting from consideration of potentially unpredictable chess moves. Each position was evaluated...
-
Creation of Hydrogen Bonded 1D Networks by Cocrystallization of N,N`-bis(2-pyridyl) aryldiamines with Dicarboxylic Acids.Tworzenie 1D sieci krystalicznych poprzez kokrystalizację N,N` -bis(2-piry- dylo) arylodiamin z kwasami dikarboksylowymi.
PublicationZsyntetyzowano szereg N,N`-bis(2-pirydylo) arylodiamin, a następnie otrzymano serię kompleksów w/w amin z kwasami dikarboksylowymi oraz kwasem kwadratowym w postaci monokryształów. Jednostki N,N`-bis(2-pirydylo) arylodiamin i kwasy dikarboksylowe oddziaływują ze sobą poprzez wiązania wodorowe tworząc ośmioczłonowy cykliczny układ. W kompleksach 1:1 cząsteczki układają się w jedno-wymiarową sieć krystaliczną tworzoną przy udziale...
-
Spatially Resolved Degradation in Heterophasic Polymers From 1D and 2D Spectral–Spatial ESR Imaging Experiments
Publication -
0D, 1D, 2D molybdenum disulfide functionalized by 2D polymeric carbon nitride for photocatalytic water splitting
Publication -
Wind-wave variability in a shallow tidal sea—Spectral modelling combined with neural network methods
Publication -
Modeling and Simulation for Exploring Power/Time Trade-off of Parallel Deep Neural Network Training
PublicationIn the paper we tackle bi-objective execution time and power consumption optimization problem concerning execution of parallel applications. We propose using a discrete-event simulation environment for exploring this power/time trade-off in the form of a Pareto front. The solution is verified by a case study based on a real deep neural network training application for automatic speech recognition. A simulation lasting over 2 hours...
-
Neural network simulator's application to reference performance determination of turbine blading in the heat-flow diagnostics.
PublicationIn the paper, the possibility of application of artificial neural networks to perform the fluid flow calculations through both damaged and undamaged turbine blading was investigated. Preliminary results are presented and show the potentiality of further development of the method for the purpose of heat-flow diagnostics.
-
Enhancing voice biometric security: Evaluating neural network and human capabilities in detecting cloned voices
PublicationThis study assesses speaker verification efficacy in detecting cloned voices, particularly in safety-critical applications such as healthcare documentation and banking biometrics. It compares deeply trained neural networks like the DeepSpeaker with human listeners in recognizing these cloned voices, underlining the severe implications of voice cloning in these sectors. Cloned voices in healthcare could endanger patient safety by...
-
Performance and Energy Aware Training of a Deep Neural Network in a Multi-GPU Environment with Power Capping
PublicationIn this paper we demonstrate that it is possible to obtain considerable improvement of performance and energy aware metrics for training of deep neural networks using a modern parallel multi-GPU system, by enforcing selected, non-default power caps on the GPUs. We measure the power and energy consumption of the whole node using a professional, certified hardware power meter. For a high performance workstation with 8 GPUs, we were...
-
Identification of the Contamination Source Location in the Drinking Water Distribution System Based on the Neural Network Classifier
PublicationThe contamination ingression to the Water Distribution System (WDS) may have a major impact on the drinking water consumers health. In the case of the WDS contamination the data from the water quality sensors may be efficiently used for the appropriate disaster management. In this paper the methodology based on the Learning Vector Quantization (LVQ) neural network classifier for the identification of the contamination source location...
-
Self-Organising map neural network in the analysis of electromyography data of muscles acting at temporomandibular joint.
PublicationThe temporomandibular joint (TMJ) is the joint that via muscle action and jaw motion allows for necessary physiological performances such as mastication. Whereas mandible translates and rotates [1]. Estimation of activity of muscles acting at the TMJ provides a knowledge of activation pattern solely of a specific patient that an electromyography (EMG) examination was carried out [2]. In this work, a Self-Organising Maps (SOMs)...
-
Monitoring Regenerative Heat Exchanger in Steam Power Plant by Making Use of the Recurrent Neural Network
PublicationArtificial Intelligence algorithms are being increasingly used in industrial applications. Their important function is to support operation of diagnostic systems. This paper pesents a new approach to the monitoring of a regenerative heat exchanger in a steam power plant, which is based on a specific use of the Recurrent Neural Network (RNN). The proposed approach was tested using real data. This approach can be easily adapted to...
-
Design of Microstrip UWB Balun Using Quasi-TEM Approach Aided by the Artificial Neural Network
PublicationThe design procedure for UWB balun realized in the microstrip technology is proposed in the paper. The procedure applies Artificial Neural Network which corrects the dimensions of the approximate design found by appropriate scaling of the dimensions of the prototype. The scale coefficients for longitudinal and transverse dimensions of microstrip lines are determined from electromagnetic modeling based on transmission line equations....
-
Biotrickling filtration of n-butanol vapors: process monitoring using electronic nose and artificial neural network
PublicationBiotrickling filtration is one of the techniques used to reduce odorants in the air. It is based on the aerobic degradation of pollutants by microorganisms located in the filter bed. The research presents the possibility of using the electronic nose prototype combined with artificial neural network for biofiltration process monitoring in terms of reduction in n-butanol concentration and odour intensity of treated air. The study...
-
Modelling of a medium-term dynamics in a shallow tidal sea, based on combined physical and neural network methods
Publication -
<title>Recurrent neural network application to image filtering: 2-D Kalman filtering approach</title>
Publication -
Hybrid Inception-embedded deep neural network ResNet for short and medium-term PV-Wind forecasting
Publication -
Full-Reference Quality Metric Based on Neural Network to Assess the Visual Quality of Remote Sensing Images
Publication -
New Two-center Ellipsoidal Basis Function Neural Network for Fault Diagnosis of Analog Electronic Circuits
PublicationIn the paper a new fault diagnosis-oriented neural network and a diagnostic method for localization of parametric faults in Analog Electronic Circuits (AECs) with tolerances is presented. The method belongs to the class of dictionary Simulation Before Test (SBT) methods. It utilizes dictionary fault signatures as a family of identification curves dispersed around nominal positions by component tolerances of the Circuit Under Test...
-
Designing of an effective structure of system for the maintenance of a technical object with the using information from an artificial neural network
Publication -
Mutual Coupling Reduction in Antenna Arrays Using Artificial Intelligence Approach and Inverse Neural Network Surrogates
PublicationThis paper presents a novel approach to reduce undesirable coupling in antenna arrays using custom-designed resonators and inverse surrogate modeling. To illustrate the concept, two stand-ard patch antenna cells with 0.07λ edge-to-edge distance are designed and fabricated to operate at 2.45 GHz. A stepped-impedance resonator is applied between the antennas to suppress their mutual coupling. For the first time, the optimum values...
-
Generalized regression neural network and fitness dependent optimization: Application to energy harvesting of centralized TEG systems
PublicationThe thermoelectric generator (TEG) system has attracted extensive attention because of its applications in centralized solar heat utilization and recoverable heat energy. The operating efficiency of the TEG system is highly affected by operating conditions. In a series-parallel structure, due to diverse temperature differences, the TEG modules show non-linear performance. Due to the non-uniform temperature distribution (NUTD) condition,...
-
Food Classification from Images Using a Neural Network Based Approach with NVIDIA Volta and Pascal GPUs
PublicationIn the paper we investigate the problem of food classification from images, for the Food-101 dataset extended with 31 additional food classes from Polish cuisine. We adopted transfer learning and firstly measured training times for models such as MobileNet, MobileNetV2, ResNet50, ResNet50V2, ResNet101, ResNet101V2, InceptionV3, InceptionResNetV2, Xception, NasNetMobile and DenseNet, for systems with NVIDIA Tesla V100 (Volta) and...
-
Safety assessment of ships in critical conditions using a knowledge-based system for design and neural network system
PublicationW pracy opisano wybrane elementy metody oceny bezpieczeństwa statków w stanie uszkodzonym, ukierunkowanej na ocenę osiągów statku i ocenę ryzyka. Metoda analizy osiągów i zachowania się statku w stanie uszkodzonym została wykorzystana do oceny charakterystyk hydromechanicznych statku uszkodzonego. Do oceny ryzyka wykorzystano elementy metodyki Formalnej Oceny Bezpieczeństwa. System ekspertowy został wykorzystany do analziy podziału...
-
Optimal Selection of Input Features and an Acompanying Neural Network Structure for the Classification Purposes - Skin Lesions Case Study
Publication