Search results for: training set
-
Video of LEGO bricks on conveyor belt - minifigures, animals, plants and accessories
Open Research DataThe set contains videos of LEGO bricks (minifigures, animals, plants and accessories) moving on a white conveyor belt. The images were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera...
-
Video of LEGO bricks on conveyor belt - Narrow Brics
Open Research DataThe set contains videos of LEGO bricks (narrow bricks, with on side no wider than 1 stud) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary...
-
Recognition of Emotions in Speech Using Convolutional Neural Networks on Different Datasets
PublicationArtificial Neural Network (ANN) models, specifically Convolutional Neural Networks (CNN), were applied to extract emotions based on spectrograms and mel-spectrograms. This study uses spectrograms and mel-spectrograms to investigate which feature extraction method better represents emotions and how big the differences in efficiency are in this context. The conducted studies demonstrated that mel-spectrograms are a better-suited...
-
Assessing the attractiveness of human face based on machine learning
PublicationThe attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...
-
News that Moves the Market: DSEX-News Dataset for Forecasting DSE Using BERT
PublicationStock market is a complex and dynamic industry that has always presented challenges for stakeholders and investors due to its unpredictable nature. This unpredictability motivates the need for more accurate prediction models. Traditional prediction models have limitations in handling the dynamic nature of the stock market. Additionally, previous methods have used less relevant data, leading to suboptimal performance. This study...
-
Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks
PublicationThe presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods....
-
Investigating Feature Spaces for Isolated Word Recognition
PublicationThe study addresses the issues related to the appropriateness of a two-dimensional representation of speech signal for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and time-frequency signal representation converted to the investigated feature spaces. In particular, waveforms and fractal dimension features of the signal were chosen for the time domain, and...
-
Neural Modelling of Steam Turbine Control Stage
PublicationThe paper describes possibility of steam turbine control stage neural model creation. It is of great importance because wider application of green energy causes severe conditions for control of energy generation systems operation Results of chosen steam turbine of 200 MW power measurements are applied as an example showing way of neural model creation. They serve as training and testing data of such neural model. Relatively simple...
-
Improved Uniform Sampling in Constrained Domains for Data-Driven Modelling of Antennas
PublicationData-driven surrogate modelling of antenna structures is an attractive way of accelerating the design process, in particular, parametric optimization. In practice, construction of surrogates is hindered by curse of dimensionality as well as wide ranges of geometry parameters that need to be covered in order to make the model useful. These difficulties can be alleviated by constrained performance-driven modelling with the surrogate...
-
Artificial Neural Networks as an architectural design tool- generating new detail forms based on the Roman Corinthian order capital
PublicationThe following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital....
-
Video of LEGO bricks on conveyor belt - wheels, tires and caterpillars
Open Research DataThe set contains videos of LEGO bricks (wheels, tires and caterpillars) moving on a white conveyor belt. The images were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located...
-
Influence of Thermal Imagery Resolution on Accuracy of Deep Learning based Face Recognition
PublicationHuman-system interactions frequently require a retrieval of the key context information about the user and the environment. Image processing techniques have been widely applied in this area, providing details about recognized objects, people and actions. Considering remote diagnostics solutions, e.g. non-contact vital signs estimation and smart home monitoring systems that utilize person’s identity, security is a very important factor....
-
Enhanced uniform data sampling for constrained data‐driven modeling of antenna input characteristics
PublicationData-driven surrogates are the most popular replacement models utilized in many fields of engineering and science, including design of microwave and antenna structures. The primary practical issue is a curse of dimensionality which limits the number of independent parameters that can be accounted for in the modelling process. Recently, a performance-driven modelling technique has been proposed where the constrained domain of the...
-
Design-Oriented Constrained Modeling of Antenna Structures
PublicationFast surrogate models are crucially important to reduce the cost of design process of antenna structures. Due to curse of dimensionality, standard (data-driven) modeling methods exhibit serious limitations concerning the number of independent geometry parameters that can be handled but also (and even more importantly) their parameter ranges. In this work, a design-oriented modeling framework is proposed in which the surrogate is...
-
Video Classification Technology in a Knowledge-Vision-Integration Platform for Personal Protective Equipment Detection: An Evaluation
PublicationThis work is part of an effort for the development of a Knowledge-Vision Integration Platform for Hazard Control (KVIP-HC) in industrial workplaces, adaptable to a wide range of industrial environments. This paper focuses on hazards resulted from the non-use of personal protective equipment (PPE), and examines a few supervised learning techniques to compose the proposed system for the purpose of recognition of three protective...
-
Embedded gas sensing setup for air samples analysis
PublicationThis paper describes a measurement setup (eNose) designed to analyze air samples containing various volatile organic compounds (VOCs). The setup utilizes a set of resistive gas sensors of divergent gas selectivity and sensitivity. Some of the applied sensors are commercially available and were proposed recently to reduce their consumed energy. The sensors detect various VOCs at sensitivities determined by metal oxide sensors’ technology...
-
Low-Cost Modeling of Microwave Components by Means of Two-Stage Inverse/Forward Surrogates and Domain Confinement
PublicationFull-wave electromagnetic (EM) analysis is one of the most important tools in the design of modern microwave components and systems. EM simulation permits reliable evaluation of circuits at the presence of cross-coupling effects or substrate anisotropy, as well as for accounting for interactions with the immediate environment. However, repetitive analyses required by EM-driven procedures, such as parametric optimization or statistical...
-
LDRAW based renders of LEGO bricks moving on a conveyor belt
Open Research DataThe set contains renders of 5237 LEGO bricks moving on a white conveyor belt. The images were prepared for training neural network for recognition of LEGO bricks. For each brick starting position, alignment and color was selected (simulating the brick falling down on the conveyour belt) and than 10 images was created while the brick was moved across...
-
Accurate Modeling of Frequency Selective Surfaces Using Fully-Connected Regression Model with Automated Architecture Determination and Parameter Selection Based on Bayesian Optimization
PublicationSurrogate modeling has become an important tool in the design of high-frequency structures. Although full-wave electromagnetic (EM) simulation tools provide an accurate account for the circuit characteristics and performance, they entail considerable computational expenditures. Replacing EM analysis by fast surrogates provides a way to accelerate the design procedures. Unfortunately, modeling of microwave passives is a challenging...
-
Data librarian and data steward – new tasks and responsibilities of academic libraries in the context of Open Research Data implementation in Poland
PublicationThesis/Objective – The policy of Open Access (OA) for researching resources in Europe has been implemented for more than 10 years. The first recommendations concerning providing OA to scientific materials were defined during the implementation of the 7th Framework Programme. Introducing another set of recommendations concerning OA to research data was the next stage. The recommendations were transformed into obligations under the...
-
Deep Instance Segmentation of Laboratory Animals in Thermal Images
PublicationIn this paper we focus on the role of deep instance segmentation of laboratory rodents in thermal images. Thermal imaging is very suitable to observe the behaviour of laboratory animals, especially in low light conditions. It is an non-intrusive method allowing to monitor the activity of animals and potentially observe some physiological changes expressed in dynamic thermal patterns. The analysis of the recorded sequence of thermal...
-
Triangulation-based Constrained Surrogate Modeling of Antennas
PublicationDesign of contemporary antenna structures is heavily based on full-wave electromagnetic (EM) simulation tools. They provide accuracy but are CPU-intensive. Reduction of EM-driven design procedure cost can be achieved by using fast replacement models (surrogates). Unfortunately, standard modeling techniques are unable to ensure sufficient predictive power for real-world antenna structures (multiple parameters, wide parameter ranges,...
-
Multi-fidelity EM simulations and constrained surrogate modelling for low-cost multi-objective design optimisation of antennas
PublicationIn this study, a technique for low-cost multi-objective design optimisation of antenna structures has been proposed. The proposed approach is an enhancement of a recently reported surrogate-assisted technique exploiting variable-fidelity electromagnetic (EM) simulations and auxiliary kriging interpolation surrogate, the latter utilised to produce the initial approximation of the Pareto set. A bottleneck of the procedure for higher-dimensional...
-
BODYGUARD PROFESSION A GUIDE TO THE ART OF PERSONAL PROTECTION
PublicationThe book "Bodyguard Profession: A Guide to the Art of Personal Protection" is a comprehensive guide that introduces readers to the intricacies of professional personal protection. The author thoroughly discusses both the physical and psychological aspects of a bodyguard's work, covering elements such as stress management, self-defense techniques, and the use of modern technology in VIP protection. The guide presents...
-
Optimized Deep Learning Model for Flood Detection Using Satellite Images
PublicationThe increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...
-
Selection of effective cocrystals former for dissolution rate improvement of active pharmaceutical ingredients based on lipoaffinity index
PublicationNew theoretical screening procedure was proposed for appropriate selection of potential cocrystal formers possessing the ability of enhancing dissolution rates of drugs. The procedure relies on the training set comprising 102 positive and 17 negative cases of cocrystals found in the literature. Despite the fact that the only available data were of qualitative character, performed statistical analysis using binary classification...
-
Distinguishing of cocrystals from simple eutectic mixtures: phenolic acids as potential pharmaceutical coformers
PublicationThe multiparameter model comprising 1D and 2D QSPR/QSAR descriptors was proposed and validated for phenolic acid binary systems. This approach is based on the optimization of regression coefficients for maximization of the percentage of true positives in the pool of systems comprising either simple binary eutectics or cocrystals. The training set consisted of 58 eutectics and 168 cocrystals. The solid dispersions collection used...
-
Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various Machine learning techniques
PublicationMachine Learning (ML) method is widely used in engineering applications such as fracture mechanics. In this study, twenty different ML algorithms were employed and compared for the prediction of the fracture toughness and fracture load in modes I, II, and mixed-mode (I-II) of various materials, including fibre-reinforced concrete, cement mortar, sandstone, white travertine, marble, and granite. A set of 401 specimens of “Brazilian...
-
The role of EMG module in hybrid interface of prosthetic arm
PublicationNearly 10% of all upper limb amputations concern the whole arm. It affects the mobility and reduces the productivity of such a person. These two factors can be restored by using prosthetics. However, the complexity of human arm makes restoring its basic functions quite difficult. When the osseointegration and/or targeted muscle reinnervation (TMR) are not possible, different modalities can be used to control the prosthesis. In...
-
Investigating Feature Spaces for Isolated Word Recognition
PublicationMuch attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...
-
Recent Advances in Accelerated Multi-Objective Design of High-Frequency Structures using Knowledge-Based Constrained Modeling Approach
PublicationDesign automation, including reliable optimization of engineering systems, is of paramount importance for both academia and industry. This includes the design of high-frequency structures (antennas, microwave circuits, integrated photonic components), where the appropriate adjustment of geometry and material parameters is crucial to meet stringent performance requirements dictated by practical applications. Realistic design has...
-
LDRAW based renders of LEGO bricks moving on a conveyor belt with extracted models
Open Research DataThe set contains renders of LEGO bricks moving on a white conveyor belt. The images were prepared for training neural network for recognition of LEGO bricks. For each brick starting position, alignment and color was selected (simulating the brick falling down on the conveyour belt) and than 10 images was created while the brick was moved across the...
-
Multicomponent ionic liquid CMC prediction
PublicationWe created a model to predict CMC of ILs based on 704 experimental values published in 43 publications since 2000. Our model was able to predict CMC of variety of ILs in binary or ternary system in a presence of salt or alcohol. The molecular volume of IL (Vm), solvent-accessible surface (Sˆ), solvation enthalpy (DsolvGN), concentration of salt (Cs) or alcohol (Ca) and their molecular volumes (Vms and Vma, respectively) were chosen...
-
Voice command recognition using hybrid genetic algorithm
PublicationAbstract: Speech recognition is a process of converting the acoustic signal into a set of words, whereas voice command recognition consists in the correct identification of voice commands, usually single words. Voice command recognition systems are widely used in the military, control systems, electronic devices, such as cellular phones, or by people with disabilities (e.g., for controlling a wheelchair or operating a computer...
-
The American Sign Language alphabet
Open Research DataThe American Sign Language dataset contains all static letters of the American alphabet, meaning those that do not require movement to perform (the entire alphabet except for the letters 'J' and 'Z', which are dynamic and require hand movement).
-
Exploring the Solubility Limits of Edaravone in Neat Solvents and Binary Mixtures: Experimental and Machine Learning Study
PublicationThis study explores the edaravone solubility space encompassing both neat and binary dissolution media. Efforts were made to reveal the inherent concentration limits of common pure and mixed solvents. For this purpose, the published solubility data of the title drug were scrupulously inspected and cured, which made the dataset consistent and coherent. However, the lack of some important types of solvents in the collection called...
-
Performance-Based Nested Surrogate Modeling of Antenna Input Characteristics
PublicationUtilization of electromagnetic (EM) simulation tools is mandatory in the design of contemporary antenna structures. At the same time, conducting designs procedures that require multiple evaluations of the antenna at hand, such as parametric optimization or yield-driven design, is hindered by a high cost of accurate EM analysis. To certain extent, this issue can be addressed by utilization of fast replacement models (also referred...
-
Using Convolutional Neural Networks for Corneal Arcus Detection Towards Familial Hypercholesterolemia Screening
PublicationFamilial hypercholesterolemia (FH) is a highly undiagnosed disease. Among FH patients, the onset of premature coronary artery disease is 13 times higher than in the general population. Early diagnosis and treatment is essential to prevent cardiovascular diseases and their complications, and to prolong life. One of the clinical criteria of FH is the occurrence of a corneal arcus (CA) among patients, especially those under 45 years...
-
Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks
PublicationIn this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....
-
Дослідження проблем зайнятості випускників навчальних закладів
PublicationУ зв'язку зі зниженням загального рівня зайнятості та з огляду на кризові явища в українській економіці актуальною залишається проблема працевлаштування молоді. Спільність проблеми зайнятості випускників вишів як в Україні, так і в Європі дала змогу провести міжнародне дослідження, щоб виявити основні причини її виникнення. Результати досліджень підтвердили гіпотезу авторів. В її основі лежить комплекс причин, що пов’язані як зі...
-
Magdalena Szuflita-Żurawska
PeopleHead of the Scientific and Technical Information Services at the Gdansk University of Technology Library and the Leader of the Open Science Competence Center. She is also a Plenipotentiary of the Rector of the Gdańsk University of Technology for open science. She is a PhD Candidate. Her main areas of research and interests include research productivity, motivation, management of HEs, Open Access, Open Research Data, information...
-
On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling of Antenna Input Characteristics
PublicationDesign of contemporary antennas necessarily involves electromagnetic (EM) simulation tools. Their employment is imperative to ensure evaluation reliability but also to carry out the design process itself, especially, the adjustment of antenna dimensions. For the latter, traditionally used parameter sweeping is more and more often replaced by rigorous numerical optimization, which entails considerable computational expenses, sometimes...
-
Development of an AI-based audiogram classification method for patient referral
PublicationHearing loss is one of the most significant sensory disabilities. It can have various negative effects on a person's quality of life, ranging from impeded school and academic performance to total social isolation in severe cases. It is therefore vital that early symptoms of hearing loss are diagnosed quickly and accurately. Audiology tests are commonly performed with the use of tonal audiometry, which measures a patient's hearing...
-
Expedited Acquisition of Database Designs for Reduced-Cost Performance-Driven Modeling and Rapid Dimension Scaling of Antenna Structures
PublicationFast replacement models have been playing an increasing role in high-frequency electronics, including the design of antenna structures. Their role is to improve computational efficiency of the procedures that normally entail large numbers of expensive full-wave electromagnetic (EM) simulations, e.g., parametric optimization or uncertainty quantification. Recently introduced performance-driven modeling methods, such as the nested...
-
Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
PublicationDeployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...
-
BETWEEN IDEA AND INTERPRETATION - DESIGN PROCESS AUGMENTATION
PublicationThe following paper investigates the idea of reducing the human digital intervention to a minimum during the advanced design process. Augmenting the outcome attributes beyond the designer's capabilities by computational design methods, data collection, data computing and digital fabrication, altogether imitating the human design process. The primary technical goal of the research was verification of restrictions and abilities used...
-
A Novel Method for the Deblurring of Photogrammetric Images Using Conditional Generative Adversarial Networks
PublicationThe visual data acquisition from small unmanned aerial vehicles (UAVs) may encounter a situation in which blur appears on the images. Image blurring caused by camera motion during exposure significantly impacts the images interpretation quality and consequently the quality of photogrammetric products. On blurred images, it is difficult to visually locate ground control points, and the number of identified feature points decreases...
-
Fast multi-objective design optimization of microwave and antenna structures using data-driven surrogates and domain segmentation
PublicationPurpose Strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup are investigated. Design/methodology/approach Formulation of the multi-objective design problem oriented towards execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploit variable fidelity modeling, physics- and...
-
To Survive in a CBRN Hostile Environment: Application of CAVE Automatic Virtual Environments in First Responder Training
PublicationThis paper is of a conceptual nature and focuses on the use of a specific virtual reality environment in civil-military training. We analyzed the didactic potential of so-called CAVE automatic virtual environments for First Responder training, a type of training that fills the gap between First Aid training and the training received by emergency medical technicians. Since real training involves live drills based on unexpected situations,...
-
Methods of Cyclist Training in Europe
PublicationThe following study aims to address the issue of cyclist training methodologies. Recent European bicycle accident statistics reveal a troubling upward trend. A potential solution to mitigate such incidents involves providing cyclists with comprehensive training encompassing traffic regulations and interactions with fellow road users. We conducted a comparative analysis of the cycling education approaches and cyclist training systems...