Filters
total: 263
Search results for: NUMERICAL COMPUTATIONS
-
Optimization of Data Assignment for Parallel Processing in a Hybrid Heterogeneous Environment Using Integer Linear Programming
PublicationIn the paper we investigate a practical approach to application of integer linear programming for optimization of data assignment to compute units in a multi-level heterogeneous environment with various compute devices, including CPUs, GPUs and Intel Xeon Phis. The model considers an application that processes a large number of data chunks in parallel on various compute units and takes into account computations, communication including...
-
Multi-GPU UNRES for scalable coarse-grained simulations of very large protein systems
PublicationGraphical Processor Units (GPUs) are nowadays widely used in all-atom molecular simulations because of the advantage of efficient partitioning of atom pairs between the kernels to compute the contributions to energy and forces, thus enabling the treatment of very large systems. Extension of time- and size-scale of computations is also sought through the development of coarse-grained (CG) models, in which atoms are merged into extended...
-
GPU Acceleration of Multilevel Solvers for Analysis of Microwave Components With Finite Element Method
PublicationThe letter discusses a fast implementation of the conjugate gradient iterative method with ${rm E}$-field multilevel preconditioner applied to solving real symmetric and sparse systems obtained with vector finite element method. In order to accelerate computations, a graphics processing unit (GPU) was used and significant speed-up (2.61 fold) was achieved comparing to a central processing unit (CPU) based approach. These results...
-
Mixed 4-node shell element with assumed strain and stress in 6-parameter theory
PublicationWe propose a mixed hybrid 4-node shell elements based on Hu-Washizu principle. Apart from displacements both strains and stress fields are treated as independent fields. The element is derived in the framework of a general nonlinear 6-field shell theory with drilling rotation which is dedicated to the analysis of multifold irregular shells with intersections. The novelty of the presented results stems from the fact that the measures...
-
Towards Effective Processing of Large Text Collections
PublicationIn the article we describe the approach to parallelimplementation of elementary operations for textual data categorization.In the experiments we evaluate parallel computations ofsimilarity matrices and k-means algorithm. The test datasets havebeen prepared as graphs created from Wikipedia articles relatedwith links. When we create the clustering data packages, wecompute pairs of eigenvectors and eigenvalues for visualizationsof...
-
Mixed 4-node shell element with assumed strain and stress in 6-parameter theory
PublicationWe propose a mixed hybrid 4-node shell elements based on Hu-Washizu principle. Apart from displacements both strains and stress fields are treated as independent fields. The element is derived in the framework of a general nonlinear 6-field shell theory with drilling rotation which is dedicated to the analysis of multifold irregular shells with intersections. The novelty of the presented results stems from the fact that the measures...
-
Natural Deep Eutectic Solvents as Agents for Improving Solubility, Stability and Delivery of Curcumin
PublicationPurpose Study on curcumin dissolved in natural deep eutectic solvents (NADES) was aimed at exploiting their beneficial properties as drug carriers. Methods The concentration of dissolved curcumin in NADES was measured. Simulated gastrointestinal fluids were used to determine the concentration of curcumin and quantum chemistry computations were performed for clarifying the origin of curcumin solubility enhancement in NADES. Results NADES...
-
Modeling of Performance, Reliability and Energy Efficiency in Large-Scale Computational Environment
PublicationLarge scale of complexity of distributed computational systems imposes special challanges for prediction of quality in such systems.Existing quality models for lower-scale systems include functionality,performance,reliability,flexibility and usability.Among these attributes,performance and reliability have a particular significance to the large-scale systems computing quality modeling due to their strong dependence on the system...
-
Local basis function estimators for identification of nonstationary systems
PublicationThe problem of identification of a nonstationary stochastic system is considered and solved using local basis function approximation of system parameter trajectories. Unlike the classical basis function approach, which yields parameter estimates in the entire analysis interval, the proposed new identification procedure is operated in a sliding window mode and provides a sequence of point (rather than interval) estimates. It is...
-
Computational complexity and length of recorded data for fluctuation enhanced sensing method in resistive gas sensors
PublicationThis paper considers complexity and accuracy of data processing for gas detection using resistance fluctuation data observed in resistance gas sensors. A few selected methods were considered (Principal Component Analysis – PCA, Support Vector Machine – SVM). Functions like power spectral density or histogram were used to create input data vector for these algorithms from the observed resistance fluctuations. The presented considerations...
-
Local Mesh Deformation for accelerated parametric studies based on the Finite Element Method
PublicationThis paper presents an approach for enhancing the efficiency of two-dimensional Finite Element Method analysis in parametric studies or optimisation process of microwave components. The new approach involves local mesh deformation applied near the elements that are modified during computations. Since in the proposed approach the topology of the mesh remains unchanged, a new mesh does not have to be generated from scratch when the...
-
Simplified probabilistic analysis of settlement of cyclically loaded soil stratum using point estimate method
PublicationThe paper deals with the probabilistic analysis of settlement of a non-cohesive soil layer subjected to cyclic loading. Originally, the settlement assessment is based on deterministic compaction model which requires integration of a set of differential equations. However, making use of the Bessel functions the settlement of the soil stratum can be calculated by means of simplified algorithm. The compaction model parameters were...
-
Modeling of Performance, Reliability and Energy Efficiency in Large-Scale Computational Environments
PublicationLarge scale of complexity of distributed computational systems imposes special challenges for prediction of quality in such systems. Existing quality models for lower-scale systems include functionality, performance, reliability, flexibility and usability. Among these attributes, performance and reliability have a particular significance to the large-scale systems computing quality modeling due to their strong dependence on the...
-
FPGA computation of magnitude of complex numbers using modified CORDIC algorithm
PublicationIn this work we present computation of the magnitude of complex numbers using a modified version of the CORDIC algorithm that uses only five iterations. The relationship between the computation error and the number of CORDIC iterations are presented for floating-point and integer arithmetics. The proposed modification of CORDIC for integer arithmetic relies upon the introduction of correction once basic computations are performed...
-
FEM simulations applied to the failure analysis of RC structure under the influence of municipal sewage pressure
PublicationThe paper discusses a failure mechanism of reinforced concrete (RC) structure with steel cover that failed under the influence of municipal sewage pressure. To explain the reasons of failure, in-situ measurements, laboratory experiments and comprehensive Finite Element Method (FEM) computations were performed. Non-destructive in-situ scanning tests were carried out to determine quantity and cover thickness of embedded reinforcement...
-
Improving Effectiveness of SVM Classifier for Large Scale Data
PublicationThe paper presents our approach to SVM implementation in parallel environment. We describe how classification learning and prediction phases were pararellised. We also propose a method for limiting the number of necessary computations during classifier construction. Our method, named one-vs-near, is an extension of typical one-vs-all approach that is used for binary classifiers to work with multiclass problems. We perform experiments...
-
Distributed state estimation using a network of asynchronous processing nodes
PublicationWe consider the problem of distributed state estimation of continuous-time stochastic processes using a~network of processing nodes. Each node performs measurement and estimation using the Kalman filtering technique, communicates its results to other nodes in the network, and utilizes similar results from the other nodes in its own computations. We assume that the connection graph of the network is not complete, i.e. not all nodes...
-
Distributed state estimation using a network of asynchronous processing nodes
PublicationWe consider the problem of distributed state estimation of continuous-time stochastic processes using a~network of processing nodes. Each node performs measurement and estimation using the Kalman filtering technique, communicates its results to other nodes in the network, and utilizes similar results from the other nodes in its own computations. We assume that the connection graph of the network is not complete, i.e. not all nodes...
-
Performance evaluation of the parallel object tracking algorithm employing the particle filter
PublicationAn algorithm based on particle filters is employed to track moving objects in video streams from fixed and non-fixed cameras. Particle weighting is based on color histograms computed in the iHLS color space. Particle computations are parallelized with CUDA framework. The algorithm was tested on various GPU devices: a desktop GPU card, a mobile chipset and two embedded GPU platforms. The processing speed depending on the number...
-
Optimizing the computation of a parallel 3D finite difference algorithm for graphics processing units
PublicationThis paper explores the possibilities of using a graphics processing unit for complex 3D finite difference computation via MUSTA‐FORCE and WENO algorithms. We propose a novel algorithm based on the new properties of CUDA surface memory optimized for 2D spatial locality and compare it with 3D stencil computations carried out via shared memory, which is currently considered to be the best approach. A case study was performed for...
-
Preconditioners with Low Memory Requirements for Higher-Order Finite-Element Method Applied to Solving Maxwell’s Equations on Multicore CPUs and GPUs
PublicationThis paper discusses two fast implementations of the conjugate gradient iterative method using a hierarchical multilevel preconditioner to solve the complex-valued, sparse systems obtained using the higher order finite-element method applied to the solution of the time-harmonic Maxwell equations. In the first implementation, denoted PCG-V, a classical V-cycle is applied and the system of equations on the lowest level is solved...
-
Modeling SPMD Application Execution Time
PublicationParallel applications in a Single Process Multiple Data paradigm assume splitting huge amounts of data to multiple processors working in parallel at small data packets. As the individual data packets are not independent, the processors must interact with each other to exchange results of the calculations with their adjacent partners and take these results into account in their own computations. An example of SPMD is geometric parallelism...
-
Convergence of Monte Carlo algorithm for solving integral equations in light scattering simulations
PublicationThe light scattering process can be modeled mathematically using the Fredholm integral equation. This equation is usually solved after its discretization and transformation into the system of algebraic equations. Volume integral equations can be also solved without discretization using the Monte Carlo (MC) algorithm, but its application to the light scattering simulations has not been sufficiently studied. Here we present implementation...
-
Fracture mechanics model of cutting power versus widespread regression equations while wood sawing with circular saw blades
PublicationA comparison of the theoretical cutting power consumption results forecasted with the model (FM_CM model) which include work of separation (fracture toughness) in addition to plasticity and friction, and two widespread regression equations while wood sawing with circular saw blades has been described. in and cutting power consumption forecasted. In computations of the cutting power consumption during rip sawing of Scots pine wood...
-
Empirical verification in industrial conditions of fracture mechanics models of cutting power prediction
PublicationA comparison of experimental results obtained in the industrial conditions at a sawmill located in the Baltic Natural Forest Region (PL) and theoretical cutting power consumption forecasted with the models which include work of separation (fracture toughness) in addition to plasticity and friction has been described. In computations of cutting power consumption during rip sawing of Scots pine wood (Pinus sylvestris L.) values of...
-
Optimization of Execution Time under Power Consumption Constraints in a Heterogeneous Parallel System with GPUs and CPUs
PublicationThe paper proposes an approach for parallelization of computations across a collection of clusters with heterogeneous nodes with both GPUs and CPUs. The proposed system partitions input data into chunks and assigns to par- ticular devices for processing using OpenCL kernels defined by the user. The sys- tem is able to minimize the execution time of the application while maintaining the power consumption of the utilized GPUs and...
-
Parallel computations in the volunteer based Comcute system
PublicationThe paper presents Comcute which is a novel multi-level implemen- tation of the volunteer based computing paradigm. Comcute was designed to let users donate the computing power of their PCs in a simplified manner, requiring only pointing their web browser at a specific web address and clicking a mouse. The server side appoints several servers to be in charge of execution of particular tasks. Thanks to that the system can survive...
-
FDTD-Compatible Green's function based on scalar discrete Green's function and multidimensional Z-transform
PublicationIn this contribution, a new formulation of the discrete Green's function (DGF) is presented for the finitedifference time-domain (FDTD) grid. Recently, dyadic DGF has been derived from the impulse response of the discretized scalar wave equation (i.e., scalar DGF) with the use of the multidimensional Z-transform. Its software implementation is straightforward because only elementary functions are involved and a single function...
-
Benchmarking overlapping communication and computations with multiple streams for modern GPUs
PublicationThe paper presents benchmarking a multi-stream application processing a set of input data arrays. Tests have been performed and execution times measured for various numbers of streams and various compute intensities measured as the ratio of kernel compute time and data transfer time. As such, the application and benchmarking is representative of frequently used operations such as vector weighted sum, matrix multiplication etc....
-
Analytical fluctuation enhanced sensing by resistive gas sensors
PublicationResistance fluctuations across polarised resistive gas sensors were studied in detail to evaluate sensor working conditions for detecting methane and ammonia at various concentrations. The 1/f noise component typically dominates other noise sources up to a few kHz and can be utilised to improve gas selectivity when compared with measurements of the sensor DC resistance. The Arrhenius plot was created and the activation energy for...
-
Parallel implementation of the DGF-FDTD method on GPU Using the CUDA technology
PublicationThe discrete Green's function (DGF) formulation of the finite-difference time-domain method (FDTD) is accelerated on a graphics processing unit (GPU) by means of the Compute Unified Device Architecture (CUDA) technology. In the developed implementation of the DGF-FDTD method, a new analytic expression for dyadic DGF derived based on scalar DGF is employed in computations. The DGF-FDTD method on GPU returns solutions that are compatible...
-
Acceleration of the DGF-FDTD method on GPU using the CUDA technology
PublicationWe present a parallel implementation of the discrete Green's function formulation of the finite-difference time-domain (DGF-FDTD) method on a graphics processing unit (GPU). The compute unified device architecture (CUDA) parallel computing platform is applied in the developed implementation. For the sake of example, arrays of Yagi-Uda antennas were simulated with the use of DGF-FDTD on GPU. The efficiency of parallel computations...
-
Variable-fidelity CFD models and co-Kriging for expedited multi-objective aerodynamic design optimization
PublicationPurpose – Strategies for accelerated multi-objective optimization of aerodynamic surfaces are investigated, including the possibility of exploiting surrogate modeling techniques for computational fluid dynamic (CFD)-driven design speedup of such surfaces. The purpose of this paper is to reduce the overall optimization time. Design/methodology/approach – An algorithmic framework is described that is composed of: a search space reduction,...
-
Inverse surrogate modeling for low-cost geometry scaling of microwave and antenna structures
PublicationPurpose–The purpose of this paper is to investigate strategies for expedited dimension scaling ofelectromagnetic (EM)-simulated microwave and antenna structures, exploiting the concept of variable-fidelity inverse surrogate modeling.Design/methodology/approach–A fast inverse surrogate modeling technique is described fordimension scaling of microwave and antenna structures. The model is established using referencedesigns obtained...
-
Strategies for computationally feasible multi-objective simulation-driven design of compact RF/microwave components
PublicationMulti-objective optimization is indispensable when possible trade-offs between various (and usually conflicting) design objectives are to be found. Identification of such design alternatives becomes very challenging when performance evaluation of the structure/system at hand is computationally expensive. Compact RF and microwave components are representative examples of such a situation: due to highly compressed layouts and considerable...
-
Simulation-driven design of compact ultra-wideband antenna structures
PublicationPurpose–The purpose of this paper is to investigate strategies and algorithms for expedited designoptimization and explicit size reduction of compact ultra-wideband (UWB) antennas.Design/methodology/approach–Formulation of the compact antenna design problem aiming atexplicit size reduction while maintaining acceptable electrical performance is presented. Algorithmicframeworks are described suitable for handling various design situations...
-
Variable-fidelity shape optimization of dual-rotor wind turbines
PublicationPurpose Dual-rotor wind turbines (DRWTs) are a novel type of wind turbines that can capture more power than their single-rotor counterparts. Because their surrounding flow fields are complex, evaluating a DRWT design requires accurate predictive simulations, which incur high computational costs. Currently, there does not exist a design optimization framework for DRWTs. Since the design optimization of DRWTs requires numerous model...
-
Tuning matrix-vector multiplication on GPU
PublicationA matrix times vector multiplication (matvec) is a cornerstone operation in iterative methods of solving large sparse systems of equations such as the conjugate gradients method (cg), the minimal residual method (minres), the generalized residual method (gmres) and exerts an influence on overall performance of those methods. An implementation of matvec is particularly demanding when one executes computations on a GPU (Graphics...
-
The impact of material degradation on the resistance and reliability of truss structures
PublicationThe paper analyses limit load-carrying capacity and buckling load of truss towers used to support high voltage power lines. The analysed typical structure was subjected to characteristic loads and their combinations. The results were applied to assess structural resistance with regard to steel corrosion in the long-term operation. The extent of structural deterioration was assessed due to Young's modulus decrement in the course...
-
Analysis of the process of water entry of an amphibious vehicle
PublicationThe paper presents a method of computational and experimental analysis of the process of water entry of an amphibious vehicle. The computational method is based on the Reynolds Averaged Navier-Stokes Equations (RANSE) solver and the xperiment was carried out in the towing tank at Ship Design and Research Centre S.A. with the use of a scale model. The analysis was focused on the safety of water entry, i.e. the maximum pitch and...
-
Analysis of radiation and scattering problems with the use of hybrid techniques based on the discrete Green's function formulation of the FDTD method
PublicationIn this contribution, simulation scenarios are presented which take advantage of the hybrid techniques based on the discrete Green's function formulation of the finite-difference time-domain (DGF-FDTD) method. DGF-FDTD solutions are compatible with the finite-difference grid and can be applied for perfect hybridization of the FDTD method. The following techniques are considered: (i) DGF-FDTD for antenna simulations, (ii) DGF-based...
-
Considerations of Computational Efficiency in Volunteer and Cluster Computing
PublicationIn the paper we focus on analysis of performance and power consumption statistics for two modern environments used for computing – volunteer and cluster based systems. The former integrate computational power donated by volunteers from their own locations, often towards social oriented or targeted initiatives, be it of medical, mathematical or space nature. The latter is meant for high performance computing and is typically installed...
-
Computational modeling of molecularly imprinted polymers as a green approach to the development of novel analytical sorbents
PublicationThe development of novel molecularly imprinted polymers (MIP) sorbents for specific chemical compounds require a lot of tedious and time-consuming laboratory work. Significant quantities of solvents and reagents are consumed in the course of the verification of appropriate configurations of polymerization reagents. Implementation of molecular modeling in the MIP sorbent development process appears to provide a solution to this...
-
Implementation of DIFAR Processing in ASW Dipping Sonar
PublicationThis paper presents the implementation of the signal processing algorithm used by buoy DIFAR (Directional Frequency Analysis and Recording), that is fully operational on Polish Navy anti-submarine warfare (ASW) helicopters and ships, applied to dipping sonars for detection and tracking of submarines. The development of the DSP algorithms was a part of the modernization of sonars conducted at the Gdansk University of Technology....
-
Modeling the effect of external load variations on single, serie and parallel connected microbial fuel cells
PublicationThis paper presents a microbial fuel cell (MFC) model designed to analyze the effect of the external load on MFC performance. The model takes into account the voltage and the chemical oxygen demand (COD) dependence on the external load. The value of the model parameters were calibrated by means of the voltage relaxation method tests using a controlled load current. Laboratory measurements and MATLAB Simulink model computations...
-
Low-cost multi-objective optimization and experimental validation of UWB MIMO antenna
PublicationPurpose–The purpose of this paper is to validate methodologies for expedited multi-objective designoptimization of complex antenna structures both numerically and experimentally.Design/methodology/approach–The task of identifying the best possible trade-offs between theantenna size and its electrical performance is formulated as multi-objective optimization problem.Algorithmic frameworks are described for finding Pareto-optimal...
-
On the Matano Plane Position in Multicomponent Diffusion Couples
PublicationEven though several methods of diffusion analysis avoid a necessity for the Matano plane determination, the Matano plane locations are of interest in the multicomponent couples and when tracer experiments are performed. The positions of the Matano plane calculated from the concentration profiles should be exactly the same. However, due to experimental errors, the results can differ significantly. In the paper we consider Matano...
-
On the Matano Plane Position in Multicomponent Diffusion Couples
PublicationEven though several methods of diffusion analysis avoid a necessity for the Matano plane determination, the Matano plane locations are of interest in the multicomponent couples and when tracer experiments are performed. The positions of the Matano plane calculated from the concentration profiles should be exactly the same. However, due to experimental errors, the results can differ significantly. In the paper we consider Matano...
-
A Subspace-Splitting Moment-Matching Model-Order Reduction Technique for Fast Wideband FEM Simulations of Microwave Structures
PublicationThis article describes a novel model-order reduction (MOR) approach for efficient wide frequency band finite-element method (FEM) simulations of microwave components. It relies on the splitting of the system transfer function into two components: a singular one that accounts for the in-band system poles and a regular part that has no in-band poles. In order to perform this splitting during the reduction process, the projection...
-
Dynamics of cutting power during sawing with circular saw blades as an effect of wood properties changes in the cross section
PublicationIn the paper the effect of the method calculation upon the cutting power is presented. In computations were used models in which fracture toughness was incorporated. The comparison concerned models as follows: FM-CM – classic model in which the sum of all uncut chip thicknesses of the simultaneously teeth engaged represented the mean uncut chip thickness, FM-FDM – full dynamical model in which besides variable uncut chip thickness...