Filters
total: 575
Search results for: SENSING
-
Carbon Paste Electrode Modified with ZrO2 Nanoparticles and Ionic Liquid for Sensing of Dopamine in the Presence of Uric Acid
Publication -
Characterizing surface and air temperature in the Baltic Sea coastal area using remote sensing techniques and GIS
PublicationEstimation of surface temperature using multispectral imagery retrieved from satellite sensors constitutes several problems in terms of accuracy, accessibility, quality and evaluation. In order to obtain accurate results, currently utilized methods rely on removing atmospheric fluctuations in separate spectral windows, applying atmospheric corrections or utilizing additional information related to atmosphere or surface characteristics...
-
Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application
PublicationUtilizing the electrical properties of polymer nanocomposites is an important strategy to develop high performance solvent sensors. Here we report the synergistic effect of multi walled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) in regulating the sensitivity of the naturally occurring elastomer, natural rubber (NR). Composites were fabricated by dispersing CNTs alone and together with exfoliated RGO sheets (thermally...
-
Amperometric sensing of chemical oxygen demand at glassy carbon and silicon electrodes modified with boron-doped diamond
Publication.A boron-doped diamond (BDD) sensor is proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Boron-doped diamond thin films, acting as active sensors, were deposited on both silicon wafer and glassy carbon (GC) substrates by microwave plasma assisted chemical vapour deposition. SEM micrographs showed that BDD–Si displays triangle-faceted crystallites ca. 0.5–3 μm in size, while BDD–GC...
-
Enhancing colloidal stability of nanodiamond via surface modification with dendritic molecules for optical sensing in physiological environments
PublicationPre-treatment of diamond surface in low-temperature plasma for oxygenation and in acids for carboxylation was hypothesized to promote the branching density of the hyperbranched glycidol polymer. This was expected to increase the homogeneity of the branching level and suppress interactions with proteins. As a result, composite nanodiamonds with reduced hydrodynamic diameters that are maintained in physiological environments were...
-
Underground Water Level Prediction in Remote Sensing Images Using Improved Hydro Index Value with Ensemble Classifier
PublicationThe economic sustainability of aquifers across the world relies on accurate and rapid estimates of groundwater storage changes, but this becomes difficult due to the absence of insitu groundwater surveys in most areas. By closing the water balance, hydrologic remote sensing measures offer a possible method for quantifying changes in groundwater storage. However, it is uncertain to what extent remote sensing data can provide an...
-
Feature Weighted Attention-Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images
PublicationIn remote sensing images, change detection (CD) is required in many applications, such as: resource management, urban expansion research, land management, and disaster assessment. Various deep learning-based methods were applied to satellite image analysis for change detection, yet many of them have limitations, including the overfitting problem. This research proposes the Feature Weighted Attention (FWA) in Bidirectional Long...
-
Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data
PublicationWetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral...
-
Multi-Temporal Analysis of Changes of the Southern Part of the Baltic Sea Coast Using Aerial Remote Sensing Data
PublicationUnderstanding processes that affect changes in the coastal zone and the ability to predict these processes in the future depends on the period for which detailed monitoring is carried out and on the type of coast. This paper analyzes a southern fragment of the Baltic coast (30 km), where there has been no anthropogenic impact (Slowinski National Park). The study was carried out covering a time interval of 65 years. Historic and...
-
An experimental study of self-sensing concrete enhanced with multi-wall carbon nanotubes in wedge splitting test and DIC
PublicationConcrete is the worldwide most utilized construction material because of its very good performance, forming ability, long-term durability, and low costs. Concrete is a brittle material prone to cracking. Extensive cracking may impact durability and performance over time considerably. The addition of a small amount of carbon nanotubes (CNT) increases the concrete’s overall electrical conductivity, enabling internal structure...
-
Fluctuation enhanced gas sensing with WO3-based nanoparticle gas sensors modulated by UV light at selected wavelengths
PublicationThe sensitivity and selectivity of WO3-based gas sensors can be enhanced by UV-irradiation-induced modulation, especially if different wavelengths are employed. We used fluctuation-enhanced gas sensing, based on measurements of resistance fluctuations in the gas sensor, to study the effects of such modulation on the noise intensity for ambient atmospheres of synthetic air without and with additions of small amounts of ethanol,...
-
Highly sensitive microwave sensors based on open complementary square split-ring resonator for sensing liquid materials
PublicationThis paper presents high-sensitivity sensors based on open complementary square split-ring resonator and modified open complementary split-ring resonator operating at 4.5 GHz and 3.4 GHz, respectively. The sensors are designed for the detection of multiple liquid materials, including distilled water, methanol, and ethanol. The liquid under test is filled in a glass container loaded using a pipette. Compared to the conventional...
-
Exhaled breath gas sensing using pristine and functionalized WO3 nanowire sensors enhanced by UV-light irradiation
PublicationThe development of advanced metal-oxide-semiconductor sensing technologies for the detection of Volatile Organic Compounds (VOCs) present in exhaled breath is of great importance for non-invasive, cheap and fast medical diagnostics. Our experimental studies investigate the effects of operating temperature selection and UV-light irradiation on improving the response of WO3 nanowire sensors towards exhaled breath exposure. Herein,...
-
Comparative Study of Taste Substance Sensing by Liquid Membrane Oscillator and Electrochemical Systems With All-Solid-State Electrodes
PublicationIn food industry, different types of sensors are used for characterizing and quantifying taste substances. Therefore, it is important to establish the principal advantages and disadvantages of these sensors for optimal application. In this paper, two possible systems are compared for sensing the four fundamental tastes: sour (citric acid), salty (sodium chloride), sweet (sucrose), and bitter (caffeine or quinine hydrochloride). One...
-
Sensing the onset of epoxy coating degradation with combined Raman spectroscopy/atomic force microscopy/electrochemical impedance spectroscopy
PublicationThe paper presents the results of investigation on epoxy resin durability upon 12-week exposure to UV radiation. The aim was early determination of the onset of epoxy degradation and for this purpose an epoxy film on steel substrate systems were periodically inspected using Raman spectroscopy, atomic force microscopy and electrochemical impedance spectroscopy. The behaviour of examined polymer could be divided into three periods: immunity,...
-
Sensing Direction of Human Motion Using Single-Input-Single-Output (SISO) Channel Model and Neural Networks
PublicationObject detection Through-the-Walls enables localization and identification of hidden objects behind the walls. While numerous studies have exploited Channel State Information of Multiple Input Multiple Output (MIMO) WiFi and radar devices in association with Artificial Intelligence based algorithms (AI) to detect and localize objects behind walls, this study proposes a novel non-invasive Through-the-Walls human motion direction...
-
Application of thin dielectric films in low coherence fiber-optic Fabry-Pérot sensing interferometers: comparative study
Publication -
Remote Sensing Methods In the Study of the Impact of Long-Term Process of Sulphur Mining on Environmental Changes of the Carpathian Foreland
PublicationThe paper presents research on the extent of impact of sulphur mining process and post-mining activities upon properties of selected elements of the environment, as well as the assessment of the influence of indirect effects resulting from many years' process of exploitation of sulphur deposits in the areas of the Carpathian Foreland (south-east Poland). Within the scope of research conducted, the assessment of the extent of...
-
Er3+-to-Yb3+ and Pr3+-to-Yb3+ energy transfer for highly efficient near-infrared cryogenic optical temperature sensing
Publication -
Opto-Electrochemical Sensing Device Based on Long-Period Grating Coated with Boron-Doped Diamond Thin Film
PublicationThe fabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrodes on fused silica single mode optical fiber cladding has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ºC. We have obtained homogenous, continuous and polycrystalline surface morphology with high sp3 content in B-NCD...
-
Mapping of Flood-Prone Areas Utilizing GIS Techniques and Remote Sensing: A Case Study of Duhok, Kurdistan Region of Iraq
PublicationOne of the most common types of natural disaster, floods can happen anywhere on Earth, except in the polar regions. The severity of the damage caused by flooding can be reduced by putting proper management and protocols into place. Using remote sensing and a geospatial methodology, this study attempts to identify flood-vulnerable areas of the central district of Duhok, Iraq. The analytical hierarchy process (AHP) technique was...
-
Journal of the Indian Society of Remote Sensing
Journals -
Oxygen vacancy-enriched V2O5·nH2O nanofibers ink for universal substrates-tolerant and multi means-integratable NH3 sensing
PublicationUniversal substrates-tolerant and multi means-integratable ammonia (NH3) sensing is highly desired in future Internet of Things in environmental monitoring, food security and early diagnosis of human diseases, however, is still less than satisfactory. Here, an oxygen vacancy-governed NH3 sensing has been developed with V2O5·nH2O nanofibers (NFs) ink, via combined thermal decomposition of ammonium metavanadate and dilution. As-obtained...
-
Tailoring properties of indium tin oxide thin films for their work in both electrochemical and optical label-free sensing systems
PublicationThis work is devoted to the identification properties of indium tin oxide (ITO) thin films responsible for their possible application in combined optical and electrochemical label-free sensing systems offering enhanced functionalities. Since any post-processing would make it difficult to identify direct relation between deposition parameters and properties of the ITO films, especially when deposition on temperature-sensitive substrates...
-
Organic Vapor Sensing Mechanisms by Large-Area Graphene Back-Gated Field-Effect Transistors under UV Irradiation
PublicationThe gas sensing properties of graphene back-gated field-effect transistor (GFET) sensors toward acetonitrile, tetrahydrofuran, and chloroform vapors were investigated with the focus on unfolding possible gas detection mechanisms. The FET configuration of the sensor device enabled gate voltage tuning for enhanced measurements of changes in DC electrical characteristics. Electrical measurements were combined with a fluctuation-enhanced...
-
Long-Period Gratings and Microcavity In-Line Mach Zehnder Interferometers as Highly Sensitive Optical Fiber Platforms for Bacteria Sensing
PublicationSelected optical fiber sensors offer extraordinary sensitivity to changes in external refractive (RI), which make them promising for label-free biosensing. In this work the most sensitive ones, namely long-period gratings working at (DTP-LPG) and micro-cavity in-line Mach-Zehnder interferometers (µIMZI) are discussed for application in bacteria sensing. We describe their working principles and RI sensitivity when operating in water...
-
Simple synthesis route for fabrication of protective photo‐crosslinked poly(zwitterionic) membranes for application in non‐enzymatic glucose sensing
PublicationThis work focuses on the fabrication of non-enzymatic glucose sensing materials based on laser-formed Au nanoparticles embedded in Ti-textured substrates. Those materials possess good catalytic activity toward glucose oxidation in 0.1 × phosphate buffered saline as well as resistance to some interferants, such as ascorbic acid, urea, and glycine. The electrodes are further coated with three different polymers, that is, Nafion,...
-
Electrochemical sensing platform based on screen-printed carbon electrode modified with plasma polymerized acrylonitrile nanofilms for determination of bupropion
Publication -
Linear antenna microwave chemical vapour deposition of diamond films on long-period fiber gratings for bio-sensing applications
PublicationThe growth processes of nanocrystalline diamond (NCD) thin films on fused silica optical fibers with UV-induced long-period gratings (LPGs) were investigated with regard to biosensing applications. The films were deposited using a linear antenna microwave plasma enhanced chemical vapor deposition system, which allows for the growth of diamond at temperatures below 350°C. The films exhibited a high refractive index n = 2.32, as...
-
Electrical responses of nanoporous NiO films for light-activated nitrogen dioxide and acetone gas sensing
Open Research DataThe chemoresistive sensor response of nanoporous NiO films prepared by advanced gas deposition was investigated with and without simultaneous light irradiation, to detect nitrogen dioxide and acetone gases. The presented data show electrical responses presented as sensor resistance or relative changes in sensor resistance under selected environment...
-
Electrical and noise responses of carbon nanotube networks enhanced by UV light for nitrogen dioxide sensing
Open Research DataNetworks consisting of randomly oriented carbon nanotubes (CNN) were investigated toward nitrogen dioxide detection by means of electrical and low-frequency noise measurements. UV-activation of CNN layers improved gas sensitivity and reduced the limit of detection, especially by employing 275 nm-LED. This data set includes DC resistance measurements...
-
Combined chemoresistive and in situ FTIR spectroscopy study of nanoporous NiO films for light-activated nitrogen dioxide and acetone gas sensing
PublicationThe chemoresistive sensor response of nanoporous NiO films prepared by advanced gas deposition was investigated by combined resistivity and in situ FTIR spectroscopy, with and without simultaneous light illumination, to detect NO2 and acetone gases. The sensitivity towards NO2 increased dramatically under UV irradiation employing 275 nm light. Improved sensitivity was observed at an elevated temperature of 150 °C. In situ FTIR...
-
Optimizing Ni–Cr patterned boron-doped diamond band electrodes: Doping effects on electrochemical efficiency and posaconazole sensing performance
PublicationThere is growing interest in developing diamond electrodes with defined geometries such as, for example, micrometer-sized electrode arrays to acquire signals for electroanalysis. For electroanalytical sensing applications, it is essential to achieve precise conductive patterns on the insulating surface. This work provides a novel approach to boron-doped diamond patterning using nichrome masking for selective seeding on an oxidized...
-
Study of ZrS3-based field-effect transistors toward the understanding of the mechanisms of light-enhanced gas sensing by transition metal trichalcogenides
PublicationExtending knowledge of the properties of low-dimensional van der Waals materials, including their reactivity to the ambiance, is important for developing innovative electronic and optoelectronic devices. Transition metal trichalcogenides with tunable optical band gaps and anisotropic conductivity are an emerging class among low- dimensional structures with the possibility of gate tunability and photoreactivity. These properties...
-
Optimizing Ni–Cr patterned boron-doped diamond band electrodes: Doping effects on electrochemical efficiency and posaconazole sensing performance
Publication -
REMOTE SENSING OF ENVIRONMENT
Journals -
Chemical-Assisted Mechanical Lapping of Thin Boron-Doped Diamond Films: A Fast Route Toward High Electrochemical Performance for Sensing Devices
PublicationThere is an urgent need for an effective and economically viable increase in electrochemical performance of boron-doped diamond (BDD) electrodes that are used in sensing and electrocatalytic applications. Specifically, one must take into consideration the electrode heterogeneity due to nonhomogenous boron-dopant distribution and the removal of sp2 carbon impurities saturating the electrode, without interference in material integrity....
-
An enhanced electrochemical nanohybrid sensing platform consisting of reduced graphene oxide and sulfanyl metalloporphyrazines for sensitive determination of hydrogen peroxide and l -cysteine
Publication -
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Journals -
Australasian Remote Sensing Conference
Conferences -
Electrical and noise responses of graphene/AlGaN/GaN field-effect transistor for nitrogen dioxide, teatrahydrofuran, and acetone sensing
Open Research DataThis data set consists of raw and modified data concerning current-voltage characteristics and low-frequency noise spectra measured for graphene/AlGaN/GaN field-effect transistor in the ambiance of selected gases (laboratory air, dry and wet synthetic air, nitrogen dioxide, tetrahydrofuran, and acetone). The data show that sensor responses are enhanced...
-
Impedimetric sensing of α-amino acids driven by micro-patterned 1,8-Diazafluoren-9-one into titania- boron- doped maze-like nanocarbons
PublicationThe development of impedimetric, non-faradaic label-free sensors for the detection of α-amino acids constitutes a trailblazing technology for the fast and inexpensive quantification of such biomarkers. Since α-amino acids, such as glycine and sarcosine, are basic constituents in biological processes, a variation in their concentration may be an indicator of cardiovascular diseases and metabolic disorders or neurological conditions....
-
Identification of Shift in Sowing and Harvesting Dates of Rice Crop (L. Oryza sativa) through Remote Sensing Techniques: A Case Study of Larkana District
PublicationThe present study aimed to determine the impact of climate variability on rice crops in terms of sowing and harvesting dates and crop period. The identification of sowing and harvesting dates were spotted by mask identification, variations in land surface temperature (LST) on a temporal scale in the respective months, and a field-level social inquiry. The study was conducted during a time period (1994–2017), in which geo-referenced...
-
Electrical and noise responses of graphene back-gated field-effect transistors enhanced by UV light for organic vapors sensing
Open Research DataBack-gated field-effect transistors with graphene channels (GFETs) were investigated toward organic vapors sensing. Two methods were used for sensing experiments including DC characteristics measurements and fluctuation-enhanced sensing by low-frequency noise studies. The data set consists of raw and modified data on GFET responses to acetonitrile,...
-
Electrical and noise responses of Graphene-Silicon Schottky diodes decorated with Au nanoparticles for light-enhanced sensing of organic gases
Open Research DataGraphene-Silicon Schottky junctions decorated with Au nanoparticles were used for light-enhanced detection of organic tetrahydrofuran and chloroform. Au nanoparticles exhibited localized surface plasmon resonance (LSPR) in the range of yellow light; thus yellow LED (wavelength of 592 nm) was utilized to induce the plasmonic effect, that increased the...
-
Electrocatalytic NADH Sensing using Electrodes Modified with 2‐[2‐(4‐Nitrophenoxy)ethoxy]ethylthio‐Substituted Porphyrazine/Single‐Walled Carbon Nanotube Hybrids
Publication -
Journal of Applied Remote Sensing
Journals -
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING
Journals -
Nondestructive Optical Sensing of Flavonols and Chlorophyll in White Head Cabbage ( Brassica oleracea L. var. capitata subvar. alba ) Grown under Different Nitrogen Regimens
PublicationA multiparametric optical sensor was used to nondestructively estimate phytochemical compounds in white cabbage leaves directly in the field. An experimental site of 1980 white cabbages (Brassica oleracea L. var. capitata subvar. alba), under different nitrogen (N) treatments, was mapped by measuring leaf transmittance and chlorophyll fluorescence screening in one leaf/cabbage head. The provided indices of flavonols (FLAV) and...
-
[EMSS] Satellite Technologies: Satellite as a System, Satellite Remote Sensing 2023/24
e-Learning CoursesThis course is designed for M.Sc. students of Space and Satellite Technologies, including HSB diploma profiles Computer Science and Aerospace Technologies, within the specialty Engineering and Management of Space Systems (EMSS).