Filters
total: 1612
displaying 1000 best results Help
Search results for: weakly supervised learning
-
Koło naukowe CJO - Tech-Enhanced English Learning (TEEL)
e-Learning Courses -
Assessment Of the Relevance of Best Practices in The Development of Medical R&D Projects Based on Machine Learning
PublicationMachine learning has emerged as a fundamental tool for numerous endeavors within health informatics, bioinformatics, and medicine. However, novices among biomedical researchers and IT developers frequently lack the requisite experience to effectively execute a machine learning project, thereby increasing the likelihood of adopting erroneous practices that may result in common pitfalls or overly optimistic predictions. The paper...
-
Automated detection of pronunciation errors in non-native English speech employing deep learning
PublicationDespite significant advances in recent years, the existing Computer-Assisted Pronunciation Training (CAPT) methods detect pronunciation errors with a relatively low accuracy (precision of 60% at 40%-80% recall). This Ph.D. work proposes novel deep learning methods for detecting pronunciation errors in non-native (L2) English speech, outperforming the state-of-the-art method in AUC metric (Area under the Curve) by 41%, i.e., from...
-
An Adaptive Network Model for a Double Bias Perspective on Learning from Mistakes within Organizations
PublicationAlthough making mistakes is a crucial part of learning, it is still often being avoided in companies as it is considered as a shameful incident. This goes hand in hand with a mindset of a boss who dominantly believes that mistakes usually have negative consequences and therefore avoids them by only accepting simple tasks. Thus, there is no mechanism to learn from mistakes. Employees working for and being influenced by such a boss...
-
Computational Analysis of Transformational Organisational Change with Focus on Organisational Culture and Organisational Learning: An Adaptive Dynamical Systems Modeling Approach
PublicationTransformative Organisational Change becomes more and more significant both practically and academically, especially in the context of organisational culture and learning. However computational modeling and formalization of organisational change and learning processes are still largely unexplored. This chapter aims to provide an adaptive network model of transformative organisational change and translate a selection of organisational...
-
Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data
PublicationThis paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...
-
AUTOMATIC LEARNING OF STRATEGY AND RULES IN CARD GAMES USING IMAGE FROM CAMERA
PublicationBelow work tries to answer a question: if it is possible to replace real human with computer system in social games. As a subject for experiments, card games were chosen, because they require a lot of player interaction (playing and taking cards), while their rules are easy to present in form of clear list of statements. Such a system, should allow real players to play without constant worrying about guiding or helping computer...
-
Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance
PublicationWastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublicationAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...
-
Modeling lignin extraction with ionic liquids using machine learning approach
PublicationLignin, next to cellulose, is the second most common natural biopolymer on Earth, containing a third of the organic carbon in the biosphere. For many years, lignin was perceived as waste when obtaining cellulose and hemicellulose and used as a biofuel for the production of bioenergy. However, recently, lignin has been considered a renewable raw material for the production of chemicals and materials to replace petrochemical resources....
-
Optical method supported by machine learning for dynamics of C‐reactive protein concentrations changes detection in biological matrix samples
PublicationIn this article we present the novel spectroscopy method supported with machine learning for real-time detection of infectious agents in wastewater. In the case of infectious diseases, wastewater monitoring can be used to detect the presence of inflammation biomarkers, such as the proposed C-reactive protein, for monitoring inflammatory conditions and mass screening during epidemics for early detection in communities of concern,...
-
Adapt Your Teacher: Improving Knowledge Distillation for Exemplar-free Continual Learning
PublicationIn this work, we investigate exemplar-free class incremental learning (CIL) with knowledge distillation (KD) as a regularization strategy, aiming to prevent forgetting. KDbased methods are successfully used in CIL, but they often struggle to regularize the model without access to exemplars of the training data from previous tasks. Our analysis reveals that this issue originates from substantial representation shifts in the teacher...
-
Pursuing the Deep-Learning-Based Classification of Exposed and Imagined Colors from EEG
PublicationEEG-based brain-computer interfaces are systems aiming to integrate disabled people into their environments. Nevertheless, their control could not be intuitive or depend on an active external stimulator to generate the responses for interacting with it. Targeting the second issue, a novel paradigm is explored in this paper, which depends on a passive stimulus by measuring the EEG responses of a subject to the primary colors (red,...
-
Deep Learning Optimization for Edge Devices: Analysis of Training Quantization Parameters
PublicationThis paper focuses on convolution neural network quantization problem. The quantization has a distinct stage of data conversion from floating-point into integer-point numbers. In general, the process of quantization is associated with the reduction of the matrix dimension via limited precision of the numbers. However, the training and inference stages of deep learning neural network are limited by the space of the memory and a...
-
Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification
PublicationLiquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community...
-
A consensus-based approach to the distributed learning
Publication -
An agent-based framework for distributed learning
Publication -
Prototype selection algorithms for distributed learning
Publication -
Note on universal algoritms for learning theory
PublicationW 2001 Cucker i Smale zaproponowali nowe podejście do teorii uczenia się w oparciu o problematykę teorii aproksymacji.W 2005 i 2007 Bivev, Cohen, Dahmen, DeVore i Temlyakov opublikowali dwie prace z teorii uczenia się. W omawianej publikacji uogólniliśmy ich rezultaty jednocześnie upraszczając dowody.
-
Some aspects of blended-learning education
Publication -
E-learning in tourism and hospitality: A map
PublicationThe impact of information and communication technologies (ICT) on tourism and hospitality industries has been widely recognized and investigated as a one of the major changes within the domains in the last decade: new ways of communicating with prospective tourists and new ways of purchasing products arisen are now part of the industries’ everyday life. Poor attention has been paid so far to the role played by new media in education...
-
Structure and Randomness in Planning and Reinforcement Learning
PublicationPlanning in large state spaces inevitably needs to balance the depth and breadth of the search. It has a crucial impact on the performance of a planner and most manage this interplay implicitly. We present a novel method \textit{Shoot Tree Search (STS)}, which makes it possible to control this trade-off more explicitly. Our algorithm can be understood as an interpolation between two celebrated search mechanisms: MCTS and random...
-
Speed estimation of a car at impact with a W-beam guardrail using numerical simulations and machine learning
PublicationThis paper aimed at developing a new method of estimating the impact speed of a passenger car at the moment of a crash into a W-beam road safety barrier. The determination of such a speed based on the accident outcomes is demanding, because often there is no access to full accident data. However, accurate determination of the impact speed is one of the key elements in the reconstruction of road accidents. A machine learning algorithm...
-
Projekt Leonardo da Vinci EMDEL (European Model for Distance Education and Learning) - otwarte szkolenia online.
PublicationW referacie zaprezentowano główne zadania oraz ofertę szkoleniową Centrum Edukacji Niestacjonarnej Politechniki Gdańskiej (CEN PG) w kontekście realizowanych projektów Unii Europejskiej. Przedstawiono projekt Leonardo da Vinci EMDEL - European Model for Distance Education and learning - realizowany przez CEN PG w latach 2001-2005 oraz opisano doświadczenia w zakresie adaptacji i lokalizacji opracowanych przez partnerów projektu...
-
Road traffic can be predicted by machine learning equally effectively as by complex microscopic model
PublicationSince high-quality real data acquired from selected road sections are not always available, a traffic control solution can use data from software traffic simulators working offline. The results show that in contrast to microscopic traffic simulation, the algorithms employing neural networks can work in real-time, so they can be used, among others, to determine the speed displayed on variable message road signs. This paper describes...
-
Feature Reduction Using Similarity Measure in Object Detector Learning with Haar-like Features
PublicationThis paper presents two methods of training complexity reduction by additional selection of features to check in object detector training task by AdaBoost training algorithm. In the first method, the features with weak performance at first weak classifier building process are reduced based on a list of features sorted by minimum weighted error. In the second method the feature similarity measures are used to throw away that features...
-
Designing learning spaces through international and interdisciplinary collaborative design studio: The case of engineer architects and pedagogic students
PublicationThe study explores the dynamics and outcomes of an international interdisciplinary design studio focusing on innovative learning spaces. Conducted over two years between students of Faculty of Architecture at Gdansk Tech and pedagogic students from Kibbutzim College in Tel Aviv, this design-based study examines the contributions of unique educational program to student learning, the evolution of the design process, collaboration,...
-
Wioleta Kucharska dr hab. inż.
PeopleWioleta Kucharska (Associate Professor at the Faculty of Management and Economics of the Gdansk University of Technology, Fahrenheit Universities Union, Poland), published so far with Wiley, Springer, Taylor & Francis, Emerald, Sage, Elsevier, and Routledge. She is scientifically involved in tacit knowledge and the company culture of knowledge, learning, and collaboration (KLC approach) topics. Recently, she discovered the...
-
Fault diagnosis of marine 4-stroke diesel engines using a one-vs-one extreme learning ensemble
PublicationThis paper proposes a novel approach for intelligent fault diagnosis for stroke Diesel marine engines, which are commonly used in on-road and marine transportation. The safety and reliability of a ship's work rely strongly on the performance of such an engine; therefore, early detection of any type of failure that affects the engine is of crucial importance. Automatic diagnostic systems are of special importance because they can...
-
Machine learning approach to packaging compatibility testing in the new product development process
PublicationThe paper compares the effectiveness of selected machine learning methods as modelling tools supporting the selection of a packaging type in new product development process. The main goal of the developed model is to reduce the risk of failure in compatibility tests which are preformed to ensure safety, durability, and efficacy of the finished product for the entire period of its shelf life and consumer use. This kind of testing...
-
Experimental tuning of AuAg nanoalloy plasmon resonances assisted by machine learning method
PublicationPlasmonic nanostructures based on AuAg nanoalloys were fabricated by thermal annealing of metallic films in an argon atmosphere. The nanoalloys were chosen because they can extend the wavelength range in which plasmon resonance occurs and thus allow the design of plasmonic platforms with the desired parameters. The influence of initial fabrication parameters and experimental conditions on the formation of nanostructures was investigated....
-
An Approach to Data Reduction for Learning from Big Datasets: Integrating Stacking, Rotation, and Agent Population Learning Techniques
Publication -
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublicationThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
Machine Learning and Text Analysis in an Artificial Intelligent System for the Training of Air Traffic Controllers
PublicationThis chapter presents the application of new information technology in education for the training of air traffic controllers (ATCs). Machine learning, multi-criteria decision analysis, and text analysis as the methods of artificial intelligence for ATCs training have been described. The authors have made an analysis of the International Civil Aviation Organization documents for modern principles of ATCs education. The prototype...
-
Detection of People Swimming in Water Reservoirs with the Use of Multimodal Imaging and Machine Learning
PublicationEvery year in many countries, there are fatal unintentional drownings in different water reservoirs like swimming pools, lakes, seas, or oceans. The existing threats of this type require creating a method that could automatically supervise such places to increase the safety of bathers. This work aimed to create methods and prototype solutions for detecting people bathing in water reservoirs using a multimodal imaging system and...
-
„Active learning w praktyce” - 17. Szkolenie certyfikowane 13.12.2022 r.
e-Learning Courses -
„Active learning w praktyce” - 4. Szkolenie certyfikowane 21.10.2022 r.
e-Learning Courses -
Solubility of dapsone in deep eutectic solvents: Experimental analysis, molecular insights and machine learning predictions
PublicationBackground. Dapsone (DAP) is an anti-inflammatory and antimicrobial active pharmaceutical ingredient used to treat, e.g., AIDS-related diseases. However, low solubility is a feature hampering its efficient use. Objectives. First, deep eutectic solvents...
-
Deep learning-enabled integration of renewable energy sources through photovoltaics in buildings
PublicationInstalling photovoltaic (PV) systems in buildings is one of the most effective strategies for achieving sustainable energy goals and reducing carbon emissions. However, the requirement for efficient energy management, the fluctuating energy demands, and the intermittent nature of solar power are a few of the obstacles to the seamless integration of PV systems into buildings. These complexities surpass the capabilities of rule-based...
-
Transformational Leadership and Acceptance of Mistakes as a Source of Learning: Poland-USA Cross-Country Study
PublicationThis study explores the influence of transformational leadership on internal innovativeness mediated by mistakes acceptance, including country and industry as factors to be considered and gender and risk-taking attitude as moderators. General findings, primarily based on the US samples (healthcare, construction, and IT industry), confirmed that transformational leadership and internal innovativeness are mediated by mistakes acceptance...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
Application of fiber optic sensors using Machine Learning algorithms for temperature measurement of lithium-ion batteries
PublicationOptical fiber sensorsusing low-coherence interferometry require processing ofthe output spectrum or interferogramto quickly and accurately determine the instantaneous value of the measured quantity, such as temperature.Methods based on machine learning are a good candidate for this application. The application of four such methods in an optical fiber temperature sensoris demonstrated.Using aZnO-coated...
-
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
PublicationMethods Results Discussion References Abbreviations Copyright Abstract Background: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinformation on the web. Objective: The aim of this study is to...
-
Optimized Deep Learning Model for Flood Detection Using Satellite Images
PublicationThe increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...
-
Is it too late now to say we’re sorry? Examining anxiety contagion and crisis communication strategies using machine learning
PublicationIn this paper, we explore the role of perceived emotions and crisis communication strategies via organizational computer-mediated communication in predicting public anxiety, the default crisis emotion. We use a machine-learning approach to detect and predict anxiety scores in organizational crisis announcements on social media and the public’s responses to these posts. We also control for emotional and language tones in organizational...
-
Machine Learning Assisted Interactive Multi-objectives Optimization Framework: A Proposed Formulation and Method for Overtime Planning in Software Development Projects
PublicationMachine Learning Assisted Interactive Multi-objectives Optimization Framework: A Proposed Formulation and Method for Overtime Planning in Software Development Projects Hammed A. Mojeed & Rafal Szlapczynski Conference paper First Online: 14 September 2023 161 Accesses Part of the Lecture Notes in Computer Science book series (LNAI,volume 14125) Abstract Software development project requires proper planning to mitigate risk and...
-
Fast Fading Influence on the Deep Learning-Based LOS and NLOS Identificationin Wireless Body Area Networks
PublicationIn the article, the fast fading influence on the proposed DL (Deep Learning) approach for LOS (Line-of-Sight) and NLOS (Non-Line-of-Sight) conditions identification in Wireless Body Area Networks is investigated. The research was conducted on the basis of the off-body communication measurements using the developed mobile measurement stand, in an indoor environment for both static and dynamic scenarios. The measurements involved...
-
Enhancing environmental literacy through urban technology-based learning. The PULA app case
PublicationThis study addresses the need to enhance environmental literacy, focusing on urban adults through mobile applications, based on the example of PULA app that engages early adopters in gamified pro- environmental activities, offering insights into informal learning. Grounded in 'urban pedagogy,' the study combines semi-structured interviews with 17 application testers and quantitative data analysis, unveiling motivations, user feedback,...
-
Systemy z Uczeniem Maszynowym / Systems with Machine Learning 2022/2023
e-Learning Courses