Search results for: ESTIMATION ALGORITHMS
-
A Selection of Starting Points for Iterative Position Estimation Algorithms Using Feedforward Neural Networks
PublicationThis article proposes the use of a feedforward neural network (FNN) to select the starting point for the first iteration in well-known iterative location estimation algorithms, with the research objective of finding the minimum size of a neural network that allows iterative position estimation algorithms to converge in an example positioning network. The selected algorithms for iterative position estimation, the structure of the...
-
Sonar Pulse Detection Using Chirp Rate Estimation and CFAR Algorithms
PublicationThis paper presents a new approach to sonar pulse detection. The method uses chirp rate estimators and algorithms for the adaptive threshold, commonly used in radiolocation. The proposed approach allows detection of pulses of unknown parameters, which may be used in passive hydrolocation or jamming detection in underwater communication. Such an analysis is possible thanks to a new kind of imaging, which presents signal energy in...
-
Set membership estimation of parameters and variables in dynamic networks by recursive algorithms with moving measurment window
PublicationW artykule rozważana jest łączna estymacja przedziałowa zmiennych i parametrów w złożonej sieci dynamicznej w oparciu niepewne modele parametryczne i ograniczoną liczbę pomiarów. Opracowany został rekursywny algorytm estymacji z przesuwnym oknem pomiarowym, odpowiedni dla monitorowania sieci on-line. Okno pomiarowe pozwala na stabilizowanie klasycznego algorytmu rekurencyjnego estymacji i znacznie poprawienie obcisłości estymat....
-
Lattice filter based autoregressive spectrum estimation with joint model order and estimation bandwidth adaptation
PublicationThe problem of parametric, autoregressive model based estimation of a time-varying spectral density function of a nonstationary process is considered. It is shown that estimation results can be considerably improved if identification of the autoregressive model is carried out using the two-sided doubly exponentially weighted lattice algorithm which combines results yielded by two one-sided lattice algorithms running forward in...
-
Lattice filter based multivariate autoregressive spectral estimation with joint model order and estimation bandwidth adaptation
PublicationThe problem of parametric, autoregressive model based estimation of a time-varying spectral density function of a multivariate nonstationary process is considered. It is shown that estimation results can be considerably improved if identification of the autoregressive model is carried out using the two-sided doubly exponentially weighted lattice algorithm which combines results yielded by two one-sided lattice algorithms running...
-
New Algorithms for Adaptive Notch Smoothing
PublicationThe problem of extraction/elimination of a nonstationary complex sinusoidal signal buried in noise is considered. This problem is usually solved using adaptive notch filtering (ANF)algorithms. It is shown that accuracy of signal estimation can be increased if the results obtained from ANF are further processed using a cascade of appropriately designed filters. The resulting adaptive notch smoothing (ANS) algorithms can be employed...
-
Probe signal processing for channel estimation in underwater acoustic communication system
PublicationUnderwater acoustic communication channels are characterized by a large variety of propagation conditions. Designing a reliable communication system requires knowledge of the transmission parameters of the channel, namely multipath delay spread, Doppler spread, coherence time, and coherence bandwidth. However, the possibilities of its estimation in a realtime underwater communication system are limited, mainly due to the computational...
-
Research and Analysis of Accuracy of Location Estimation in Inertial Navigation System
PublicationIn the article the research and analysis of digital signal processing and its influence on accuracy of location estimation in developed inertial navigation system was presented. The purpose of the system is to localize moving people in indoor environment. During research a measuring unit for recording selected movement parameters was made. In the article were also described author’s inertial navigation algorithms.
-
Hyperbolic position location estimation in the multipath propagation environment
PublicationThe efficiency analysis a hyperbolic position location estimation in the multipath propagation environment in the wideband code division multiple access (WCDMA) interface was presented. Four, the most popular methods: Chan's, Foy's, Fang's and Friedlander's were considered. These algorithms enable the calculation of the geographical position of a mobile station (MS) using the time differences of arrival (TDOA) between several base...
-
Optimal and suboptimal algorithms for identification of time-varying systems with randomly drifting parameters
PublicationNoncausal estimation algorithms, which involve smoothing, can be used for off-line identification of nonstationary systems. Since smoothingis based on both past and future data, it offers increased accuracy compared to causal (tracking) estimation schemes, incorporating past data only. It is shown that efficient smoothing variants of the popular exponentially weighted least squares and Kalman filter-based parameter trackers can...
-
Parameter and delay estimation of linear continuous-time systems
PublicationIn this paper the problem of on-line identification of non-stationary delay systems is considered. Dynamics of supervised industrial processes is described by ordinary differential equations. Discrete-time mechanization of their continuous-time representations is based on dedicated finite-horizon integrating filters. Least-squares and instrumental variable procedures implemented in recursive forms are applied for simultaneous identification...
-
Parameter and delay estimation of linear continuous-time systems
PublicationIn this paper the problem of on-line identification of non-stationary delay systems is considered. Dynamics of supervised industrial processes is usually described by ordinary differential equations. Discrete-time mechanization of their continuous-time representations is based on dedicated finite-horizon integrating filters. Least-squares and instrumental variable procedures implemented in recursive forms are applied for simultaneous...
-
Fast Algorithms for Identification of Time-Varying Systems with Both Smooth and Discontinuous Parameter Changes
PublicationThe problem of noncausal identification of a time-varying linear system subject to both smooth and occasional jump-type changes is considered and solved using the preestimation technique combined with the basis function approach to modeling the variability of system parameters. The proposed estimation algorithms yield very good parameter tracking results and are computationally attractive.
-
RSS-Based DoA Estimation for ESPAR Antennas Using Support Vector Machine
PublicationIn this letter, it is shown how direction-of-arrival (DoA) estimation for electronically steerable parasitic array radiator (ESPAR) antennas, which are designed to be integrated within wireless sensor network nodes, can be improved by applying support vector classification approach to received signal strength (RSS) values recorded at an antenna's output port. The proposed method relies on ESPAR antenna's radiation patterns measured...
-
On–line Parameter and Delay Estimation of Continuous–Time Dynamic Systems
PublicationThe problem of on-line identification of non-stationary delay systems is considered. The dynamics of supervised industrial processes are usually modeled by ordinary differential equations. Discrete-time mechanizations of continuous-time process models are implemented with the use of dedicated finite-horizon integrating filters. Least-squares and instrumental variable procedures mechanized in recursive forms are applied for simultaneous...
-
Optimised Allocation of Hard Quality Sensors for Robust Monitoring of Quality in Drinking Water Distribution Systems
PublicationA problem of optimised placement of the hard quality sensors in Drinking Water Distribution Systems for robust quality monitoring is formulated. Two numerical algorithms to solve the problem are derived. The optimality is meant as achieving a desired trade off between the sensor capital and maintenance costs and resulting robust estimation accuracy of the monitoring algorithm. The robust estimation algorithm recently developed...
-
Robust Parameter Estimation and Output Prediction for Reactive Carrier-Load Nonlinear Dynamic Networks
PublicationIn this paper an extension of on-line model simplification technique for a class of networked systems, namely reactive carrier-load nonlinear dynamic networked system (RCLNDNS), kept within point-parametric model (PPM) framework is addressed. The PPM is utilised to acquire a piece wise constant time-varying parameter linear structure for the RCLNDNS suitable for the on-line one step ahead prediction that may be applied to monitoring...
-
Direction-of-Arrival Estimation Methods in Interferometric Echo Sounding
PublicationNowadays, there are two leading sea sounding technologies: the multibeam echo sounder and the multiphase echo sounder (also known as phase-dierence side scan sonar or bathymetric side scan sonar). Both solutions have their advantages and disadvantages, and they can be perceived as complementary to each other. The article reviews the development of interferometric echo sounding array configurations and the various methods applied...
-
APPLICATION OF SATELLITE IMAGERY AND GIS TOOLS FOR LAND SURFACE TEMPERATURE ESTIMATION AND VERIFICATION
PublicationLand surface temperature (LST) plays an important role in many land-surface processes on regional as well on global scales. It is also a good indicator of energy flux phenomena and is used as a parameter in various Earth observation related studies. However, LST estimation based on processing and utilisation of satellite derived data constitutes several problems in terms of time limitations, accessibility, atmospheric influence...
-
Computing methods for fast and precise body surface area estimation of selected body parts
PublicationCurrently used body surface area (BSA) formulas give satisfactory results only for individuals with typical physique, while for elderly, obese or anorectic people accurate results cannot be expected. Particularly noteworthy are the results for individuals with severe obesity (body-mass index greater than 35 kg/m2), for which BSA estimation errors reached 80%. The main goal of our study is the development of precise BSA models for...
-
Validation of Interpolation Algorithms for Multiscale UV-VIS Imaging Using UAV Spectrometer
PublicationIn this study, we present a comparison of popular methods for the interpolation of irregular spatial data in order to determine the applicability of each algorithm for hyperspectral reflectance estimation. The algorithms were benchmarked against a very high-resolution orthoimage from an RGB camera and medium-resolution satellite imagery from Sentinel-2A. We tested five interpolation algorithms: Triangulated Irregular Network (TIN),...
-
Generalized adaptive notch smoothers for real-valued signals and systems
PublicationSystems with quasi-periodically varying coefficients can be tracked using the algorithms known as generalized adaptive notch filters (GANFs). GANF algorithms can be considered an extension, to the system case, of classical adaptive notch filters (ANFs). We show that estimation accuracy of the existing algorithms, as well as their robustness to the choice of design parameters, can be considerably improved by means of compensating...
-
Identification of nonstationary multivariate autoregressive processes– Comparison of competitive and collaborative strategies for joint selection of estimation bandwidth and model order
PublicationThe problem of identification of multivariate autoregressive processes (systems or signals) with unknown and possibly time-varying model order and time-varying rate of parameter variation is considered and solved using parallel estimation approach. Under this approach, several local estimation algorithms, with different order and bandwidth settings, are run simultaneously and compared based on their predictive performance. First,...
-
Identification of nonstationary processes using noncausal bidirectional lattice filtering
PublicationThe problem of off-line identification of a nonstationary autoregressive process with a time-varying order and a time-varying degree of nonstationarity is considered and solved using the parallel estimation approach. The proposed parallel estimation scheme is made up of several bidirectional (noncausal) exponentially weighted lattice algorithms with different estimation memory and order settings. It is shown that optimization of...
-
Statistically efficient smoothing algorithm for time-varying frequency estimation
PublicationThe problem of extraction/elimination of a nonstationary sinusoidal signal from noisy measurements is considered. This problem is usually solved using adaptive notch filtering (ANF) algorithms. It is shown that the accuracy of frequency estimates can be significantly increased if the results obtained from ANF are backward-time filtered by an appropriately designed lowpass filter. The resulting adaptive notch smoothing (ANS) algorithm...
-
Evaluating Accuracy of Respiratory Rate Estimation from Super Resolved Thermal Imagery
PublicationNon-contact estimation of Respiratory Rate (RR) has revolutionized the process of establishing the measurement by surpassing some issues related to attaching sensors to a body, e.g. epidermal stripping, skin disruption and pain. In this study, we perform further experiments with image processing-based RR estimation by using various image enhancement algorithms. Specifically, we employ Super Resolution (SR) Deep Learning (DL) network...
-
Optimised Robust Placement of Hard Quality Sensors for Robust Monitoring of Quality in Drinking Water Distribution Systems
PublicationA problem of optimised robust placement of the hard quality sensors in Drinking Water Distribution Systems under several water demand scenarios for robust quality monitoring is formulated. Numerical algorithms to solve the problem are derived. The optimality is meant as achieving at the same time a desired trade off between the sensor capital and maintenance costs and resulting robust estimation accuracy of the monitoring algorithm...
-
Decoupled Kalman filter based identification of time-varying FIR systems
PublicationWhen system parameters vary at a fast rate, identification schemes based on model-free local estimation approaches do not yield satisfactory results. In cases like this, more sophisticated parameter tracking procedures must be used, based on explicit models of parameter variation (often referred to as hypermodels), either deterministic or stochastic. Kalman filter trackers, which belong to the second category, are seldom used in...
-
Improving Accuracy of Contactless Respiratory Rate Estimation by Enhancing Thermal Sequences with Deep Neural Networks
PublicationEstimation of vital signs using image processing techniques have already been proved to have a potential for supporting remote medical diagnostics and replacing traditional measurements that usually require special hardware and electrodes placed on a body. In this paper, we further extend studies on contactless Respiratory Rate (RR) estimation from extremely low resolution thermal imagery by enhancing acquired sequences using Deep...
-
Regularized Local Basis Function Approach to Identification of Nonstationary Processes
PublicationThe problem of identification of nonstationary stochastic processes (systems or signals) is considered and a new class of identification algorithms, combining the basis functions approach with local estimation technique, is described. Unlike the classical basis function estimation schemes, the proposed regularized local basis function estimators are not used to obtain interval approximations of the parameter trajectory, but provide...
-
Closer Look at the Uncertainty Estimation in Semantic Segmentation under Distributional Shift
PublicationWhile recent computer vision algorithms achieve impressive performance on many benchmarks, they lack robustness - presented with an image from a different distribution, (e.g. weather or lighting conditions not considered during training), they may produce an erroneous prediction. Therefore, it is desired that such a model will be able to reliably predict its confidence measure. In this work, uncertainty estimation for the task...
-
Karhunen-Loeve-based approach to tracking of rapidly fading wireless communication channels
PublicationWhen parameters of wireless communication channels vary at a fast rate, simple estimation algorithms, such as weighted least squares (WLS) or least mean squares (LMS) algorithms, cannot estimate them with the accuracy needed to secure the reliable operation of the underlying communication systems. In cases like this, the local basis function (LBF) estimation technique can be used instead, significantly increasing the achievable...
-
On bidirectional preestimates and their application to identification of fast time-varying systems
PublicationWhen applied to the identification of time-varying systems, such as rapidly fading telecommunication channels, adaptive estimation algorithms built on the local basis function (LBF) principle yield excellent tracking performance but are computationally demanding. The subsequently proposed fast LBF (fLBF) algorithms, based on the preestimation principle, allow a substantial reduction in complexity without significant performance...
-
Stereo vision with Equal Baseline Multiple Camera Set (EBMCS) for obtaining depth maps of plants
PublicationThis paper presents a method of improving the estimation of distances between an autonomous harvesting robot and plants with ripe fruits by using the vision system based on five cameras. The system is called Equal Baseline Multiple Camera Set (EBMCS). EBMCS has some features of a camera matrix and a camera array. EBMCS is regarded as a set of stereo cameras for estimating distances by obtaining disparity maps and depth maps. This...
-
Identification of models and signals robust to occasional outliers
PublicationIn this paper estimation algorithms derived in the sense of the least sum of absolute errors are considered for the purpose of identification of models and signals. In particular, off-line and approximate on-line estimation schemes discussed in the work are aimed at both assessing the coefficients of discrete-time stationary models and tracking the evolution of time-variant characteristics of monitored signals. What is interesting,...
-
Identification of models and signals robust to occasional outliers
PublicationIn this paper estimation algorithms derived in the sense of the least sum of absolute errors are considered for the purpose of identification of models and signals. In particular, off-line and approximate on-line estimation schemes discussed in the work are aimed at both assessing the coefficients of discrete-time stationary models and tracking the evolution of time-variant characteristics of monitored signals. What is interesting,...
-
Porównanie algorytmów lokalizacji wewnątrzbudynkowej bazujących na radiowych pomiarach odległości
PublicationNiniejszy artykuł ma na celu ocenę wybranych algorytmów estymacji położenia, które mogą być zastosowane w systemach lokalizacji w środowiskach zamkniętych. Przedstawiono pięć algorytmów bazujących na pomiarach odległości. Następnie porównano ich dokładności estymacji w warunkach statycznych oraz dla scenariusza dynamicznego przy ustalonym rozmieszczeniu trzech stacji referencyjnych. Dokonano również porównania czasu estymacji pojedynczej...
-
The hybrid estimation algorithm for wastewater treatment plant robust model predictive control purposes at medium time scale
PublicationThe paper proposes an approach to designing the hybrid estimation algorithm/module (HEA) with moving measurements window for Wastewater Treatment Plant (WWTP) Robust Model Predictive Control (RMPC) purposes at medium time scale. The RMPC uses a dedicated grey-box model of biological reactor for the system outputs prediction purposes. The grey-box model parameters are dependant on the plant operating point. Hence, these parameters...
-
Bezczujnikowe sterowanie trakcyjnym silnikiem IPMSM małej mocy
PublicationThis paper describes an algorithm for estimation of IPMSM angular rotor position. The algorithm uses derivatives of motor phase currents resulting from PWM modulation to obtain the rotor position. Control of the IPMSM electromagnetic torque requires a precise estimation of the rotor angular position throughout the wide speed range. This involves using a set of estimation methods switched with the dependence on the actual rotor...
-
Identification of Fast Time-varying Communication Channels Using the Preestimation Technique
PublicationAccurate identification of stochastic systems with fast-varying parameters is a challenging task which cannot be accomplished using model-free estimation methods, such as weighted least squares, which assume only that system coefficients can be regarded as locally constant. The current state-of-the-art solutions are based on the assumption that system parameters can be locally approximated by a linear combination of appropriately...
-
On ''cheap smoothing'' opportunities in identification of time-varying systems
PublicationIn certain applications of nonstationary system identification the model-based decisions can be postponed, i.e. executed with a delay. This allows one to incorporate into the identification process not only the currently available information, but also a number of ''future'' data points. The resulting estimation schemes, which involve smoothing, are not causal. Despite the possible performance improvements, the existing smoothing...
-
Identification of quasi-periodically varying systems with quasi-linear frequency changes
PublicationThe problem of identification of linear quasi-periodically varying systems is considered. This problem can be solved using generalized adaptive notch filtering (GANF) algorithms. It is shown that accuracy of system parameter estimation can be increased if the results obtained from GANF are further processed using a cascade of appropriately designed filters. The resulting generalized adaptive notch smoothing (GANS) algorithms can...
-
Sensorless induction motor drive with voltage inverter and sine-wave filter
PublicationThis paper presents a speed sensorless control system of an induction motor with an output LC filter. It is known that the parameters design of the filter gives sine wave motor supply voltage but complicates control and estimation process. The reason is that the voltage drop and phase shift between filter input and output signals are imposed, and hence the motor voltages and currents differ from the inverter output waveforms. To...
-
Speed estimation of a car at impact with a W-beam guardrail using numerical simulations and machine learning
PublicationThis paper aimed at developing a new method of estimating the impact speed of a passenger car at the moment of a crash into a W-beam road safety barrier. The determination of such a speed based on the accident outcomes is demanding, because often there is no access to full accident data. However, accurate determination of the impact speed is one of the key elements in the reconstruction of road accidents. A machine learning algorithm...
-
Superresolution algorithm to video surveillance system
PublicationAn application of a multiframe SR (superresolution) algorithm applied to video monitoring is described. The video signal generated by various types of video cameras with different parameters and signal distortions which may be very problematic for superresolution algorithms. The paper focuses on disadvantages in video signal which occur in video surveillance systems. Especially motion estimation and its influence on superresolution...
-
Optimally regularized local basis function approach to identification of time-varying systems
PublicationAccurate identification of stochastic systems with fast-varying parameters is a challenging task which cannot be accomplished using model-free estimation methods, such as weighted least squares, which assume only that system coefficients can be regarded as locally constant. The current state of the art solutions are based on the assumption that system parameters can be locally approximated by a linear combination of appropriately...
-
An optimised placement of the hard quality sensors for a robust monitoring of the chlorine concentration in drinking water distribution systems
PublicationThe problem of an optimised placement of the hard quality sensors in drinking water distribution systemsunder several water demand scenarios for a robust monitoring of the chlorine concentration is formulatedin this paper. The optimality is understood as achieving a desired trade off between the sensors and theirmaintenance costs and the accuracy of estimation of the chlorine concentration. The contribution of thiswork is a comprehensive...
-
New Approach to Noncasual Identification of Nonstationary Stochastic FIR Systems Subject to Both Smooth and Abrupt Parameter Changes
PublicationIn this technical note, we consider the problem of finite-interval parameter smoothing for a class of nonstationary linear stochastic systems subject to both smooth and abrupt parameter changes. The proposed parallel estimation scheme combines the estimates yielded by several exponentially weighted basis function algorithms. The resulting smoother automatically adjusts its smoothing bandwidth to the type and rate of nonstationarity...
-
Indirect Measurement of Motor Current Derivatives in PMSM Sensorless Drives
PublicationMotor current derivatives contain useful information for control algorithms, especially in sensorless electric drives. The measurement of motor current derivatives in electric motors supplied by voltage source inverter can be performed using di/dt transducers. However, in such a solution additional sensors have to be installed, e.g. Rogowski coils. Another approach is to measure current derivatives indirectly – by oversampling...
-
Generalized Savitzky–Golay filters for identification of nonstationary systems
PublicationThe problem of identification of nonstationary systems using noncausal estimation schemes is consid-ered and a new class of identification algorithms, combining the basis functions approach with localestimationtechnique,isdescribed.Unliketheclassicalbasisfunctionestimationschemes,theproposedlocal basis function estimators are not used to obtain interval approximations of the parametertrajectory, but provide a sequence of point...