Search results for: CELLULOSE NANOMATERIALS
-
Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect
PublicationIn recent years, the static and dynamic response of micro/nanobeams made of hyperelasticity materials received great attention. In the majority of studies in this area, the strain-stiffing effect that plays a major role in many hyperelastic materials has not been investigated deeply. Moreover, the influence of the size effect and large rotation for such a beam that is important for the large deformation was not addressed. This...
-
In-Out Surface Modification of Halloysite Nanotubes (HNTs) for Excellent Cure of Epoxy: Chemistry and Kinetics Modeling
PublicationIn-out surface modification of halloysite nanotubes (HNTs) has been successfully performed by taking advantage of 8-hydroxyquinolines in the lumen of HNTs and precisely synthesized aniline oligomers (AO) of different lengths (tri- and pentamer) anchored on the external surface of the HNTs. Several analyses, including FTIR, H-NMR, TGA, UV-visible spectroscopy, and SEM, were used to establish the nature of the HNTs’ surface engineering....
-
Epoxy/Ionic Liquid-Modified Mica Nanocomposites: Network Formation–Network Degradation Correlation
PublicationWe synthesized pristine mica (Mica) and N-octadecyl-N’-octadecyl imidazolium iodide (IM) modified mica (Mica-IM), characterized it, and applied it at 0.1–5.0 wt.% loading to prepare epoxy nanocomposites. Dynamic differential scanning calorimetry (DSC) was carried out for the analysis of the cure potential and kinetics of epoxy/Mica and epoxy/Mica-IM curing reaction with amine curing agents at low loading of 0.1 wt.% to avoid particle...
-
Preparation and Characterization of Microsphere ZnO ALD Coating Dedicated for the Fiber-Optic Refractive Index Sensor
PublicationWe report the fabrication of a novel fiber-optic sensor device, based on the use of a microsphere conformally coated with a thin layer of zinc oxide (ZnO) by atomic layer deposition (ALD), and its use as a refractive index sensor. The microsphere was prepared on the tip of a single-mode optical fiber, on which a conformal ZnO thin film of 200 nm was deposited using an ALD process based on diethyl zinc (DEZ) and water at 100 °C....
-
Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration
PublicationBacterial infections due to bone replacement surgeries require modifications of bone cement with antibacterial components. This study aimed to investigate whether the incorporation of gentamicin or nanometals into bone cement may reduce and to what extent bacterial growth without the loss of overall cytocompatibility and adverse effects in vitro. The bone cement Cemex was used as the base material, modified either with gentamicin...
-
Solvent-Free Synthesis of Phosphonic Graphene Derivative and Its Application in Mercury Ions Adsorption
PublicationFunctionalized graphene was efficiently prepared through ball-milling of graphite in the presence of dry ice. In this way, oxygen functional groups were introduced into material. The material was further chemically functionalized to produce graphene derivative with phosphonic groups. The obtained materials were characterized by spectroscopic and microscopic methods, along with thermogravimetric analysis. The newly developed material...
-
Titania Nanotubes/Hydroxyapatite Nanocomposites Produced with the Use of the Atomic Layer Deposition Technique: Estimation of Bioactivity and Nanomechanical Properties
PublicationTitanium dioxide nanotubes/hydroxyapatite nanocomposites were produced on a titanium alloy (Ti6Al4V/TNT/HA) and studied as a biocompatible coating for an implant surface modification. As a novel approach for this type of nanocomposite fabrication, the atomic layer deposition (ALD) method with an extremely low number of cycles was used to enrich titania nanotubes (TNT) with a very thin hydroxyapatite coating. X-ray diffraction (XRD)...
-
Impact of Tetrazolium Ionic Liquid Thermal Decomposition in Solvothermal Reaction on the Remarkable Photocatalytic Properties of TiO2 Particles
PublicationIonic liquids (ILs) could serve as a structuring agent, a solvent, or a source of dopant during solvothermal synthesis of semiconductors particles. To understand the role of IL during formation of TiO2 particles, it is necessary to study the stability of this IL in solvothermal synthesis conditions, as well as studying the surface properties of formed TiO2 particles. In view of this, the effect of the 2,3,5-triphenyltetrazolium...
-
Morphology, Photocatalytic and Antimicrobial Properties of TiO2 Modified with Mono- and Bimetallic Copper, Platinum and Silver Nanoparticles
PublicationNoble metal nanoparticles (NMNPs) enhanced TiO2 response and extended its activity under visible light. Photocatalytic activity of TiO2 modified with noble metal nanoparticles strongly depends on the physicochemical properties of NMNPs. Among others, the differences in the size of NMNPs seems to be one of the most important factors. In this view, the effect of the metal’s nanoparticles size, type and amount on TiO2 photocatalytic...
-
UV-Vis-Induced Degradation of Phenol over Magnetic Photocatalysts Modified with Pt, Pd, Cu and Au Nanoparticles
PublicationThe combination of TiO2 photocatalyst and magnetic oxide nanoparticles enhances the separation and recoverable properties of nanosized TiO2 photocatalyst. Metal-modified (Me = Pd, Au, Pt, Cu) TiO2/SiO2@Fe3O4 nanocomposites were prepared by an ultrasonic-assisted sol-gel method. All prepared samples were characterized by X-ray powder diffraction (XRD) analysis, Brunauer-Emmett-Teller (BET) method, X-ray photoelectron spectroscopy...
-
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems
Journals -
Computer design of materials and nanomaterials 2024-25
e-Learning Courses -
Synthesis Methods of nanomaterials & Experimental nanotechnology
e-Learning Courses -
Recent Advances in Polymer Nanocomposites: Unveiling the Frontier of Shape Memory and Self-Healing Properties—A Comprehensive Review
PublicationShape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, opening up new avenues for diverse applications. The...
-
Environmental Degradation of Ramie Fibre Reinforced Biocomposites
PublicationThe degradation process of two kinds of biocomposites, Ramie fibre/Ecoflex R/E and ramie fibre/cellulose nanofibre reinforced corn starch resin R/CS, were studied. It was demonstrated that R/CS degraded faster in natural environments.
-
From ashes to porous hierarchical nanocarbon electrode: Upcycling secondary waste materials through self-catalytic chemical vapour deposition
PublicationMetal and metal oxide particles are abundant in various ash-based wastes. Utilizing these as catalyst sources for the fabrication of carbon nanomaterials could present a valuable approach to reduce our reliance on non-renewable and costly catalyst sources, thereby facilitating large-scale nanomaterial production. In this context, secondary waste materials (SWMs) are by-products resulting from the (complete or partial) combustion...
-
Detection of UPEC IH11128 ability to form biofilm in a standard congo red (CR) method of colony staining.
Open Research DataA standard method of testing E. coli's ability to form biofilm is based on the analysis of morphologyof bacterial colonies grown on yeast extract/casamino acids (YESCA) nutrient agar medium containing congored (CR) as an indicator dye of ECM production. The CR dye adsorbed from the culture medium bybacteria binds to the components of the ECM, including...
-
Technologie otrzymywania nanomateriałów
e-Learning Courses -
Metody Syntezy Nanomateriałów
e-Learning Courses -
Metody syntezy nanomateriałów
e-Learning Courses -
Metody Syntezy Nanomateriałów
e-Learning Courses -
Technologie otrzymywania nanomateriałów
e-Learning Courses -
Technologie Otrzymywania Nanomateriałów
e-Learning Courses -
The Influence of Substitution of a Phosphorus-Containing Polyol with the Bio-polyol on the Properties of Bio-based PUR/PIR Foams
PublicationIn this work, effects of incorporating of a phosphorus-containing polyol into rigid polyurethane/polyisocyanurate foams’ formulations developed with use of two different bio-based polyols, derived from crude glycerol or liquefied cellulose were examined. The bio-polyol derived from crude glycerol was synthesized via two-step process from crude glycerol and castor oil, whereas the bio-polyol derived from liquefied cellulose was...
-
Andrzej Okuniewski dr inż.
PeopleEducation 2010-2014: Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of TechnologyPhD in chemical sciences (chemical sciences - chemistry, inorganic chemistry) 2009-2010: Faculty of Chemistry, Gdańsk University of TechnologyMaster of Chemistry (applied chemistry) 2005-2009: Faculty of Chemistry, Gdańsk University of Technologychemical engineer (applied chemistry) 2002-2005: II High School Władysław Pniewski...
-
Application of g-C3N4/ZnO nanocomposites for fabrication of anti-fouling polymer membranes with dye and protein rejection superiority
PublicationPolysulfone (PSf) membranes are privileged for water and wastewater treatment, but because of their hydrophobic nature, they suffer from fouling, which lowers their performance and lifetime. In this work, g-C3N4 and g-C3N4/ZnO nanomaterials were synthesized via a hydrothermal method to modify the PSf membrane for effective dye separation and reduction of organic fouling. Since g-C3N4/ZnO possesses –OH and –NH reactive groups, g-C3N4/ZnO/PSf...
-
A review on hydrophobic electrospun nanofibers-based materials and membranes for water treatment: Challenges, outlook, and stability
PublicationMembrane technology is well recognized as a dependable means of supplementing the availability of potable water through processes such as water purification and desalination. Electrospun nanofiber membranes have garnered significant attention because of their advantageous features, including a greater specific surface area, increased porosity, reduced thickness, and popularity. Consequently, ENMs have emerged as an up-and-coming...
-
Muhammad Danish Ali MSc.
PeopleMuhammad Danish Ali is a dedicated researcher ( Google scholar h index 12) specializing in energy Storage Materials at Silesian University of Technology in Katowice, Poland. He is completing his PhD under the supervision of Prof. Anna Starczewska from Silesian University of Technology, Katowice, Poland. With a solid academic foundation in material science from the University of the Punjab, Lahore, he has focused his research on...
-
Nanotechnologies in Development of Structural Materials and Biomaterials
PublicationThe nanometric materials and technologies resulted in nanostructures are reviewed. The examples of nanomaterials are shown. The typical nanotechnologies, including plastic deformation, mechanical attrition, controlled detonation, hot plasma jet synthesis, laser vaporisation, CVD and PVD, mechanical milling, annealing, ultrasonic irradiation, nanolithography, electrocrystallisation, electrospinning, sol-gel method, cryogenic laser-enhanced...
-
Environmemtal Degradation of Ramie Fibre Reinforced Biocomposites
PublicationThe estimation of environmental degradibility of different fibre reinforced biocomposites in Baltic sea and in compost with activated sludge under natural conditions is the subject of this paper. Two types of biocomposites, ramie fibre/ecoflex and ramie fibre/cellulose nanofibre reinforced corn starch resin, were studied.It was demonstrated that the biocomposites with natural fibre of ramie were degraded in compost faster than...
-
Self-organized multilayered graphene-boron doped diamond hybrid nanowalls for high performance electron emission devices
PublicationCarbon nanomaterials like nanotubes, nanoflakes/nanowalls and graphene have been used as electron sources due to their superior field electron emission (FEE) characteristics. Nevertheless, these materials show poor stability and a short lifetime, preventing them from being used in practical device applications. The intention of this study was to find an innovative nanomaterial, possessing both high robustness and reliable FEE behavior....
-
Thermal stability of V2O5 nanorods under oxidizing atmosphere
Open Research DataThe DataSet contains the TGA curves of V2O5 nanorods obtained at 650°C. The information about nanorods synthesis is described in the Journal of Nanomaterials.
-
2D MXene nanocomposites: electrochemical and biomedical applications
PublicationIn recent years, key questions about the interaction of 2D MXene nanomaterials in electrochemical and biomedical applications have been raised. Most research has focused on clarifying the exclusive properties of the materials; however, only limited reports have described the biomedical applications of 2D nanomaterials. 2D MXenes are monolayer atomic nanosheets resulting from MAX phase ceramics. The hydrophilic properties, metallic...
-
Nanostructured biocatalysis for biotechnological applications
PublicationThe purpose immobilization process is to enhance the performance of an enzyme for commercial processes. A large number of structures have been reported in the literature to boost the effectiveness of immobilized enzymes. The nanomaterials have the optimal properties for equilibrating key parameters that govern the performance of biocatalysts, such as high enzyme loading ability, specific surface area, and mass transfer resistance....
-
Elektrochemia Materiałów i Nanomateriałów
e-Learning Courses -
Chemia nanomateriałów 2022/23
e-Learning CoursesW ramach niniejszego kursu zamieszczane będą materiały do zajęć z przedmiotu Chemia nanomateriałów dla kierunku Nanotechnologia (IV sem., I st.).
-
Nowe technologie nanomateriałów 2023
e-Learning Courses -
Chemia nanomateriałów 2023/24
e-Learning CoursesW ramach niniejszego kursu zamieszczane będą materiały do zajęć z przedmiotu Chemia nanomateriałów dla kierunku Nanotechnologia (IV sem., I st.).
-
Immobilized TiO2for Phenol Degradation in a Pilot-Scale Photocatalytic Reactor
Publication -
New Class of Antimicrobial Agents: SBA-15 Silica Containing Anchored Copper Ions
Publication -
Effect of Water Content in Ethylene Glycol Solvent on the Size of ZnO Nanoparticles Prepared Using Microwave Solvothermal Synthesis
Publication -
Chlorination of Carbon Nanotubes Obtained on the Different Metal Catalysts
Publication -
Current-Voltage Characteristics of the Composites Based on Epoxy Resin and Carbon Nanotubes
Publication -
Preparation and Characterization of Au/Pd Modified-TiO2 Photocatalysts for Phenol and Toluene Degradation under Visible Light—The Effect of Calcination Temperature
PublicationRutile loaded with Au/Pd nanoparticles was prepared using a water-in-oil microemulsion system of water/AOT/cyclohexane followed by calcination.Theeffect of calcination temperature (from350 to 700∘C) on the structure ofAu/Pd nanoparticles deposited at rutile matrix and the photocatalytic properties of Au/Pd-TiO2 was investigated in two model reactions (toluene degradation in gas phase and phenol degradation in aqueous phase). The...
-
The influence of thermal conditions on V2O5 nanostructures prepared by sol-gel method
PublicationThis work presents the result of structure investigations ofV 2O5 nanorods grown from thin films and powders prepared by sol-gel method. To examine the best temperature of nanorods crystallization, thin films deposited by spin-coating method on quartz glass or silicon substrates and bulk xerogel powders were annealed at various temperatures ranging from 100∘C to 600∘C. The structure of the samples was characterized by X-ray diffraction...
-
Synthesis and Characterization of Monometallic (Ag, Cu) and Bimetallic Ag-Cu Particles for Antibacterial and Antifungal Applications
PublicationIn this paper, the experimental studies are concerned with the effect of the synthesis parameters on the formation of monometallic Ag and Cu nanoparticles (NPs). We consider the synthesis strategies verification for the bimetallic core-shell and alloy particles preparation. It was successfully obtained by chemical reduction method. The obtained colloidal solution is characterized by the transmission electron microscopy (TEM) with...
-
The Antibacterial and Antifungal Textile Properties Functionalized by Bimetallic Nanoparticles of Ag/Cu with Different Structures
PublicationWe reported a preparation and characterization of five kinds of impregnation solutions, containing Ag/Cu in the formof bimetallic nanoparticles (alloy and core-shell) as well as ionic species. The cotton-polyester textiles were successfully impregnated during the washing and ironing process by as-prepared solutions to have antibacterial and antifungal properties against to Escherichia coli, Staphylococcus aureus, and Candida albicans....
-
Progress, Challenge, and Perspective of Bimetallic TiO2-Based Photocatalysts
PublicationBimetallic TiO2-based photocatalysts have attracted considerable attention in recent years as a class of highly active catalysts and photocatalysts under both UV and Vis light irradiation. Bimetallic noble metal structures deposited on TiO2 possess the ability to absorb visible light, in a wide wavelength range (broad LSPR peak), and therefore reveal the highest level of activity as a result of utilization of a large amount of...
-
Synthesis of CoFe2O4 Nanoparticles: The Effect of Ionic Strength, Concentration, and Precursor Type on Morphology and Magnetic Properties
PublicationThe present study highlights the effect of metal precursor types (SO4 2¯, Cl¯, and NO3¯), their concentration, and the influence of ionic strength of reaction environment on the morphology, surface, and magnetic properties of CoFe2O4 particles. The magnetic nanoparticles were obtained by chemical coprecipitation in alkaline medium at increasing metal concentration in the range of 0.0425 mol·dm-3 to 0.17 mol·dm-3 and calcination...
-
The Effect of Calcination Temperature on Structure and Photocatalytic Properties of WO3/TiO2 Nanocomposites
PublicationSeries ofWO3/TiO2 nanocompositeswere obtained by hydrothermal method followed by calcination in the temperature range from 400∘C to 900∘C. The characteristics of photocatalysts by X-ray diffractometry (XRD), scanning electron microscope (SEM), and diffuse reflectance spectroscopy (DRS) showed that increasing the calcination temperature from 400 to 900∘C resulted in change of photocatalytic activity under UV-Vis light.Moreover,...