Filtry
wszystkich: 787
wybranych: 717
Wyniki wyszukiwania dla: NONLINEAR METHOD
-
Method of lines for nonlinear first order partial functional differential equations.
PublikacjaClassical solutions of initial problems for nonlinear functional differential equations of Hamilton--Jacobi type are approximated by solutions of associated differential difference systems. A method of quasilinearization is adopted. Sufficient conditions for the convergence of the method of lines and error estimates for approximate solutions are given. Nonlinear estimates of the Perron type with respect to functional variables...
-
Generalized method of lines for nonlinear first order partial differential equations
PublikacjaKlasyczne rozwiązania zagadnień początkowych oraz początkowo brzegowych są przybliżane za pomocą rozwiązań równań różniczkowo różnicowych. Skonstruowana jest metoda prostych polegająca na dyskretyzacji wyjściowego równania względem zmiennych przestrzennych. Przedstawiony w pracy schemat bazuje na metodzie linearyzacji dla zagadnień nieliniowych. W pracy zastosowano metodę quasilinearyzacji polegającą na zamianie nieliniowego równania...
-
Generalized Euler method for nonlinear first order partial differential equations.
PublikacjaKlasyczne rozwiązania nieliniowych równań różniczkowych cząstkowych pierwszego rzędu są aproksymowane w tej pracy za pomocą rozwiązań quasiliniowych układów równań różnicowych. Podstawowa idea pracy jest oparta na teorii charakterystyk. Podane są warunki wystarczające dla zbieżności metody. Dowód stabilności schematu różnicowego wykorzystuje metodę porównawczą z nieliniowymi oszacowaniami typu Perrona dla danych funkcji.Podane...
-
Theoretical and computational analysis of nonlinear fractional integro-differential equations via collocation method
Publikacja -
Nonlocal nonlinear bending of rectangular nanoscale plate including central hole via complex differential quadrature method
Publikacja -
Finite element modeling of plastic hinges based on ductility demand-capacity method using nonlinear material for dynamic analysis
PublikacjaThe article discusses modeling plastic hinges in reinforced concrete interme-diate supports using finite elements methods. The ductility demand-capacitymethod was used to determine the geometrical parameters of cross-section plas-ticization zones, their ability to move and rotate, as well as their ductility. Dueto the varied geometry and stiffness of the supports and their nonlinear behav-ior under dynamic load, this method was...
-
Nonlocal Vibration of Carbon/Boron-Nitride Nano-hetero-structure in Thermal and Magnetic Fields by means of Nonlinear Finite Element Method
PublikacjaHybrid nanotubes composed of carbon and boron-nitride nanotubes have manifested as innovative building blocks to exploit the exceptional features of both structures simultaneously. On the other hand, by mixing with other types of materials, the fabrication of relatively large nanotubes would be feasible in the case of macroscale applications. In the current article, a nonlinear finite element formulation is employed to deal with...
-
Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method
PublikacjaThis research predicts theoretically post-critical axial buckling behavior of truncated conical carbon nanotubes (CCNTs) with several boundary conditions by assuming a nonlinear Winkler matrix. The post-buckling of CCNTs has been studied based on the Euler-Bernoulli beam model, Hamilton’s principle, Lagrangian strains, and nonlocal strain gradient theory. Both stiffness-hardening and stiffness-softening properties of the nanostructure...
-
Systems of Nonlinear Fractional Differential Equations
PublikacjaUsing the iterative method, this paper investigates the existence of a unique solution to systems of nonlinear fractional differential equations, which involve the right-handed Riemann-Liouville fractional derivatives D(T)(q)x and D(T)(q)y. Systems of linear fractional differential equations are also discussed. Two examples are added to illustrate the results.
-
Nonlinear properties of the Gotland Deep – Baltic Sea
PublikacjaThe properties of the nonlinear phenomenon in water, including sea water, have been well known for many decades. The feature of the non homogeneous distribution of the speed of sound along the depth of the sea is very interesting from the physical and technical point of view. It is important especially in the observation of underwater area by means of acoustical method ( Grelowska et al ., 2013; 2014). The observation of the underwater...
-
Discrete-time estimation of nonlinear continuous-time stochastic systems
PublikacjaIn this paper we consider the problem of state estimation of a dynamic system whose evolution is described by a nonlinear continuous-time stochastic model. We also assume that the system is observed by a sensor in discrete-time moments. To perform state estimation using uncertain discrete-time data, the system model needs to be discretized. We compare two methods of discretization. The first method uses the classical forward Euler...
-
On the geometrically nonlinear vibration of a piezo-flexomagnetic nanotube
PublikacjaIn order to describe the behavior of thin elements used in MEMS and NEMS, it is essential to study a nonlinear free vibration of nanotubes under complicated external fields such as magnetic environment. In this regard, the magnetic force applied to the conductive nanotube with piezo-flexomagnetic elastic wall is considered. By the inclusion of Euler-Bernoulli beam and using Hamilton’s principle, the equations governing the system...
-
Discrete-time estimation of nonlinear continuous-time stochastic systems
PublikacjaIn this paper we consider the problem of state estimation of a dynamic system whose evolution is described by a nonlinear continuous-time stochastic model. We also assume that the system is observed by a sensor in discrete-time moments. To perform state estimation using uncertain discrete-time data, the system model needs to be discretized. We compare two methods of discretization. The first method uses the classical forward Euler...
-
Generation and Propagation of Nonlinear Waves in a Towing Tank
PublikacjaThe paper presents the results of the research focused on linear and nonlinear wave generation and propagation in a deepwater towing tank equipped with a single flap-type wavemaker of variable draft. The problem of wave generation and propagation has been theoretically formulated and solved by applying an analytical method; linear and nonlinear solutions were obtained. The linear solution has been verified experimentally. The...
-
On the convergence of a nonlinear finite-difference discretization of the generalized Burgers–Fisher equation
PublikacjaIn this note, we establish analytically the convergence of a nonlinear finite-difference discretization of the generalized Burgers-Fisher equation. The existence and uniqueness of positive, bounded and monotone solutions for this scheme was recently established in [J. Diff. Eq. Appl. 19, 1907{1920 (2014)]. In the present work, we prove additionally that the method is convergent of order one in time, and of order two in space. Some...
-
The application of nonlinear curvature sections in the turnout diverging track
PublikacjaThe paper presents the analytical method of modelling the diverging track of railway turnout with nonlinear curvature sections. These sections were used for smoothing the graph of curvature in the extreme areas of turnout. The problem of the curvature distribution was identified with the use of differential equations. The resulting solutions are of universal nature for example the ability of assuming any values of curvature at...
-
Certain family of analytical solutions of nonlinear von Neumann equations
PublikacjaIn this paper we present a slight generalization of certain type of Darboux transformation, that may be used sub-sequently in a convenient way. This method allows to obtain families of solutions of nonlinear von Neumann equations, that are used in particular in DNA modeling.
-
A Novel Approach to Fully Nonlinear Mathematical Modeling of Tectonic Plates
PublikacjaThe motion of the Earth's layers due to internal pressures is simulated in this research with an efficient mathematical model. The Earth, which revolves around its axis of rotation and is under internal pressure, will change the shape and displacement of the internal layers and tectonic plates. Applied mathematical models are based on a new approach to shell theory involving both two and three-dimensional approaches. It is the...
-
Identification of Parameters Influencing the Accuracy of the Solution of the Nonlinear Muskingum Equation
PublikacjaTwo nonlinear versions of the Muskingum equation are considered. The difference between both equations relates to the exponent parameter. In the first version, commonly used in hydrology, this parameter is considered as free, while in the second version, it takes a value resulting from the kinematic wave theory. Consequently, the first version of the equation is dimensionally inconsistent, whereas the proposed second one is consistent. It...
-
Multimode systems of nonlinear equations: derivation, integrability, and numerical solutions
PublikacjaWe consider the propagation of electromagnetic pulses in isotropic media taking a third-order nonlinearityinto account. We develop a method for transforming Maxwell's equations based on a complete set ofprojection operators corresponding to wave-dispersion branches (in a waveguide or in matter) with thepropagation direction taken into account. The most important result of applying the method is a systemof equations describing the...
-
Softly Switched Robustly Feasible Model Predictive Control for Nonlinear Network Systems
PublikacjaIt is common that an efficient constrained plant operation under full range of disturbance inputs require meeting different sets of control objectives. This calls for application of model predictive controllers each of them being best fit into specific operating conditions. It further requires that not only designing robustly feasible model predictive controllers is needed to satisfy the real plant state/output constraints, but...
-
Nonlinear Control of a Doubly Fed Generator Supplied by a Current Source Inverter
PublikacjaNowadays, wind turbines based on a doubly fed induction generator (DFIG) are a commonly used solution in the wind industry. The standard converter topology used in these systems is the voltage source inverter (VSI). The use of reverse-blocking insulated gate bipolar transistor (RB-IGBT) in the current source inverter topology (CSI), which is an alternative topology, opens new possibilities of control methods. This paper presents...
-
Investigations of the optical activity of nonlinear crystals by means of dual-wavelength polarimeter
PublikacjaA dual-wavelength method in high accuracy polarimetry has been successfully tested and applied to measure optical activity (OA) of nonlinear crystals. In proposed polarimetric scheme two neighboring semiconductor laser wavelengths (635 and 650 nm) are used, which increases number of parameters measured simultaneously and improves the data processing. By neglecting dispersion of eigen wave ellipticity in crystals, more efficient...
-
Searching of the buried objects into the sea bottom by means of nonlinear acouctic methods
PublikacjaThe main goal of this paper is to introduce the methodology of preparing the area for investigations that will be carried out at the sea. As the first step there is recognition of the basic method both in the theory as well as experimental investigation. There were taken into account the nonlinear methods. These ones are very promising methods that have very interesting features, very convenient for examinations of the seabed structure....
-
Geometrically nonlinear analysis of shells - Benchmark problems for Autocad Robot Analysis Professional
PublikacjaThe aim of this work is to verify the suitability of commercial engineering software for geometrically nonlinear analysis of shells. This paper deals with the static, geometrically nonlinear analysis of shells made of an isotropic material. The Finite Element Method (FEM) is chosen to solve the problem. The results of the commercial software Autocad Robot Structural Analysis Professional (ARSAP) are compared with the litera-ture...
-
On time-dependent nonlinear dynamic response of micro-elastic solids
PublikacjaA new approach to the mechanical response of micro-mechanic problems is presented using the modified couple stress theory. This model captured micro-turns due to micro-particles' rotations which could be essential for microstructural materials and/or at small scales. In a micro media based on the small rotations, sub-particles can also turn except the whole domain rotation. However, this framework is competent for a static medium....
-
Analysis of nonlinear eigenvalue problems for guides and resonators in microwave and terahertz technology
PublikacjaThis dissertation presents developed numerical tools for investigating waveguides and resonators' properties for microwave and terahertz technology. The electromagnetics analysis requires solving complex eigenvalue problems, representing various parameters such as resonant frequency or propagation coefficient. Solving equations with eigenvalue boils down to finding the roots of the determinant of the matrix. At the beginning, one...
-
Analysis of Floodplain Inundation Using 2D Nonlinear Diffusive Wave Equation Solved with Splitting Technique
PublikacjaIn the paper a solution of two-dimensional (2D) nonlinear diffusive wave equation in a partially dry and wet domain is considered. The splitting technique which allows to reduce 2D problem into the sequence of one-dimensional (1D) problems is applied. The obtained 1D equations with regard to x and y are spatially discretized using the modified finite element method with the linear shape functions. The applied modification referring...
-
On Nonlinear Bending Study of a Piezo-Flexomagnetic Nanobeam Based on an Analytical-Numerical Solution
PublikacjaAmong various magneto-elastic phenomena, flexomagnetic (FM) coupling can be defined as a dependence between strain gradient and magnetic polarization and, contrariwise, elastic strain and magnetic field gradient. This feature is a higher-order one than piezomagnetic, which is the magnetic response to strain. At the nanoscale, where large strain gradients are expected, the FM effect is significant and could be even dominant. In...
-
LNG TANK IN ŚWINOUJŚCIE: NONLINEAR ANALYSIS OF THE TANK DOME ELEMENTS BEHAVIOUR
PublikacjaIn this paper, the dome of a tank in the Świnoujście LNG terminal is analysed. Some of the rafter ribs at the connection with hangers were not mounted during construction of the tank dome. Therefore, it has become necessary to estimate its response, which has been done with the aid of some computational models of the dome, that have been created in the finite element method environment. Different local models are studied, aiming...
-
Effect of surface on the flexomagnetic response of ferroic composite nanostructures; nonlinear bending analysis
PublikacjaOur analysis incorporates the geometrically nonlinear bending of the Euler-Bernoulli ferromagnetic nanobeam accounting for a size-dependent model through assuming surface effects. In the framework of the flexomagnetic phenomenon, the large deflections are investigated referring to von-Kármán nonlinearity. Employing the nonlocal effects of stress coupled to the gradient of strain generates a scale-dependent Hookean stress-strain...
-
FEM analysis of composite materials failure in nonlinear six field shell theory
PublikacjaThe monography deals with the problem of failure initiation in thin laminated composites. Known techniques of laminate structures modelling are briefly characterised. Eventually, shell based approach is chosen for the purpose of the description of the composite structures behaviour, as it predicts their deformation and states of stress effectively in a global sense. The nonlinear six parameter shell theory (6p theory) with asymmetric...
-
Indirect adaptive controller based on a self-structuring fuzzy system for nonlinear modeling and control
PublikacjaIn this paper, a unified nonlinear modeling and control scheme is presented. A self-structuring Takagi-Sugeno (T-S) fuzzymodel is used to approximate the unknown nonlinear plant based on I/O data collected on-line. Both the structure and theparameters of the T-S fuzzy model are updated by an on-line clustering method and a recursive least squares estimation(RLSE) algorithm. The rules of the fuzzy model can be added, replaced or...
-
Progressive failure analysis of laminates in the framework of 6-field nonlinear shell theory
PublikacjaThe paper presents the model of progressive failure analysis of laminates incorporated into the 6-field non-linear shell theory with non-symmetrical strain measures of Cosserat type. Such a theory is specially recommended in the analysis of shells with intersections due to its specific kinematics including the so-called drilling rotation. As a consequence of asymmetry of strain measures, modified laminates failure criteria must...
-
Impact of diffusion coefficient averaging on solution accuracy of the 2D nonlinear diffusive wave equation for floodplain inundation
PublikacjaIn the study, the averaging technique of diffusion coefficients in the two-dimensional nonlinear diffusive wave equation applied to the floodplain inundation is presented. As a method of solution, the splitting technique and the modified finite element method with linear shape functions are used. On the stage of spatial integration, it is often assumed that diffusion coefficient is constant over element and equal to its average...
-
Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect
PublikacjaIn recent years, the static and dynamic response of micro/nanobeams made of hyperelasticity materials received great attention. In the majority of studies in this area, the strain-stiffing effect that plays a major role in many hyperelastic materials has not been investigated deeply. Moreover, the influence of the size effect and large rotation for such a beam that is important for the large deformation was not addressed. This...
-
Nonlinear free and forced vibrations of a dielectric elastomer-based microcantilever for atomic force microscopy
PublikacjaThe majority of atomic force microcode (AFM) probes work based on piezoelectric actuation. However, some undesirable phenomena such as creep and hysteresis may appear in the piezoelectric actuators that limit their applications. This paper proposes a novel AFM probe based on dielectric elastomer actuators (DEAs). The DE is modeled via the use of a hyperelastic Cosserat model. Size effects and geometric nonlinearity are included...
-
Estimation of Failure Initiation in Laminated Composites by means of Nonlinear Six-Field Shell Theory and FEM
PublikacjaThe monography deals with the problem of failure initiation in thin laminated composites. Known techniques of laminate structures modelling are briefly characterised. Eventually, shell based approach is chosen for the purpose of the description of the composite structures behaviour, as it predicts their deformation and states of stress effectively in a global sense. The nonlinear six parameter shell theory (6p theory) with asymmetric...
-
Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit
PublikacjaConsidering the interplay between orbital bones and intraorbital soft tissues, commonly accepted patterns of the blow-out type of trauma within the human orbit require more thorough investigation to assess the minimal health-threatening impact value. Two different three-dimensional finite element method (FEM) models of the human orbital region were developed to simulate the pure “buckling” mechanism of orbital wall fracture in...
-
A selectively reduced degree basis for efficient mixed nonlinear isogeometric beam formulations with extensible directors
PublikacjaThe effect of higher order continuity in the solution field by using NURBS basis function in isogeometric analysis (IGA) is investigated for an efficient mixed finite element formulation for elastostatic beams. It is based on the Hu–Washizu variational principle considering geometrical and material nonlinearities. Here we present a reduced degree of basis functions for the additional fields of the stress resultants and strains...
-
Asynchronous time difference of arrival (ATDOA) method
PublikacjaA new method for a location service in the asynchronous wireless sensor networks is outlined. This method, which is called asynchronous time difference of arrival (ATDOA), enables calculation of the position of a mobile node without knowledge of relative time differences (RTDs) between measuring sensors. The ATDOA method is based on the measurement of time difference of arrival between the node and the same sensor at the discrete...
-
Nonlinear Properties of Seawater as a Factor Determining Nonlinear Wave Propagation
PublikacjaTaking practical advantage of nonlinear acoustical interactions occurring in seawater [1, 2] requires knowledge of the parameter of nonlinearity B=A of this medium. The literature does not offer much reports on B=A parameter value for seawater. In the few papers concerning that address the issue, results concerning ocean waters with high salinity and at large depths are given [3], while studies concerning seawater with low salinity...
-
Low Cost Method for Location Service in the WCDMA System
PublikacjaA new and low cost method for a location service (LCS) in the Wideband Code Division Multiple Access (WCDMA) system is outlined. This method, which is called TDOA + RTT, enables calculation of the geographical position of a mobile station (MS) without knowledge of relative time differences (RTDs) between base stations (BSs). The TDOA+RTT method is based on the measurement of round trip times (RTTs) between the MS and the serving...
-
Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment
PublikacjaStress-driven nonlocal theory of elasticity, in its differential form, is applied to investigate the nonlinear vibrational characteristics of a hetero-nanotube in magneto-thermal environment with the help of finite element method. In order to more precisely deal with the dynamic behavior of size-dependent nanotubes, a two-node beam element with six degrees-of freedom including the nodal values of the deflection, slope and curvature...
-
The experimental identification of the dynamic coefficients of two hydrodynamic journal bearings operating at constant rotational speed and under nonlinear conditions.
PublikacjaHydrodynamic bearings are commonly used in ship propulsion systems. Typically, they are calculated using numerical or experimental methods. This paper presents an experimental study through which it has been possible to estimate 24 dynamic coefficients of two hydrodynamic slide bearings operating under nonlinear conditions. During the investigation, bearing mass coefficients are identified by means of a newly developed algorithm....
-
Monitoring Steel Bolted Joints during a Monotonic Tensile Test Using Linear and Nonlinear Lamb Wave Methods: A Feasibility Study
PublikacjaThe structural integrity of steel bolted joints may be compromised due to excessive loading. Therefore, condition assessment and the detection of potential defects before they cause a failure have become a major issue. The paper is focused on the condition monitoring of a bolted lap joint subjected to progressive degradation in a tensile test. The inspection used Lamb waves propagated through the overlap area. Wave propagation...
-
Method of lines for Hamilton-Jacobi functional differential equations.
PublikacjaInitial boundary value problems for nonlinear first order partial functional differential equations are transformed by discretization in space variables into systems of ordinary functional differential equations. A method of quasi linearization is adopted. Suffcient conditions for the convergence of the method of lines and error estimates for approximate solutions are presented. The proof of the stability of the diffrential difference...
-
Analytical method of modelling the geometric system of communication route
PublikacjaThe paper presents a new analytical approach to modelling the curvature of a communication route by making use of differential equations. The method makes it possible to identify both linear and nonlinear curvature. It enables us to join curves of the same or opposite signs of curvature. Solutions of problems for linear change of curvature and selected variants of nonlinear curvature in polynomial and trigonometric form were analyzed....
-
Designing a ship course controller by applying the adaptivebackstepping method
PublikacjaThe article discusses the problem of designing a proper and efficient adaptive course-keeping control system for a seagoingship based on the adaptive backstepping method. The proposed controller in the design stage takes into account thedynamic properties of the steering gear and the full nonlinear static maneuvering characteristic. The adjustable parametersof the achieved nonlinear control structure were tuned up by using the...
-
A Nonlinear Model of a Mesh Shell
PublikacjaFor a certain class of elastic lattice shells experiencing finite deformations, a continual model using the equations of the so-called six-parameter shell theory has been proposed. Within this model, the kinematics of the shell is described using six kinematically independent scalar degrees of freedom — the field of displacements and turns, as in the case of the Cosserat continuum, which gives reason to call the model under consideration...