Filtry
wszystkich: 429
wybranych: 423
-
Katalog
Filtry wybranego katalogu
Wyniki wyszukiwania dla: GRAPH NEURAL NETWORK COLLABORATIVE FILTERING
-
Musical Instrument Identification Using Deep Learning Approach
PublikacjaThe work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata...
-
Heavy duty vehicle fuel consumption modelling using artificial neural networks
PublikacjaIn this paper an artificial neural network (ANN) approach to modelling fuel consumption of heavy duty vehicles is presented. The proposed method uses easy accessible data collected via CAN bus of the truck. As a benchmark a conventional method, which is based on polynomial regression model, is used. The fuel consumption is measured in two different tests, performed by using a unique test bench to apply the load to the engine. Firstly,...
-
Video of LEGO Bricks on Conveyor Belt Dataset Series
PublikacjaThe dataset series titled Video of LEGO bricks on conveyor belt is composed of 14 datasets containing video recordings of a moving white conveyor belt. The recordings were created using a smartphone camera in Full HD resolution. The dataset allows for the preparation of data for neural network training, and building of a LEGO sorting machine that can help builders to organise their collections.
-
Classifying Emotions in Film Music - A Deep Learning Approach
PublikacjaThe paper presents an application for automatically classifying emotions in film music. A model of emotions is proposed, which is also associated with colors. The model created has nine emotional states, to which colors are assigned according to the color theory in film. Subjective tests are carried out to check the correctness of the assumptions behind the adopted emotion model. For that purpose, a statistical analysis of the...
-
Adding Interpretability to Neural Knowledge DNA
PublikacjaThis paper proposes a novel approach that adds the interpretability to Neural Knowledge DNA (NK-DNA) via generating a decision tree. The NK-DNA is a promising knowledge representation approach for acquiring, storing, sharing, and reusing knowledge among machines and computing systems. We introduce the decision tree-based generative method for knowledge extraction and representation to make the NK-DNA more explainable. We examine...
-
Developing a Low SNR Resistant, Text Independent Speaker Recognition System for Intercom Solutions - A Case Study
PublikacjaThis article presents a case study on the development of a biometric voice verification system for an intercom solution, utilizing the DeepSpeaker neural network architecture. Despite the variety of solutions available in the literature, there is a noted lack of evaluations for "text-independent" systems under real conditions and with varying distances between the speaker and the microphone. This article aims to bridge this gap....
-
Influence of accelerometer signal pre-processing and classification method on human activity recognition
PublikacjaA study of data pre-processing influence on accelerometer-based human activity recognition algorithms is presented. The frequency band used to filter-out the accelerometer signals and the number of accelerometers involved were considered in terms of their influence on the recognition accuracy. In the test four methods of classification were used: support vector machine, decision trees, neural network, k-nearest neighbor.
-
Multifunctional PID Neuro-Controller for Synchronous Generator
PublikacjaThis paper deals with a PID Neuro-Controller (PIDNC) for synchronous generator system. The controller is based on artificial neural network and adaptive control strategy. It ensures two functions: maintaining the generator voltage at its desired value and damping electromechanical oscillations. The performance of the proposed controller is evaluated on the basis of simulation tests. A comparative study of the results obtained with...
-
Automatic labeling of traffic sound recordings using autoencoder-derived features
PublikacjaAn approach to detection of events occurring in road traffic using autoencoders is presented. Extensions of existing algorithms of acoustic road events detection employing Mel Frequency Cepstral Coefficients combined with classifiers based on k nearest neighbors, Support Vector Machines, and random forests are used. In our research, the acoustic signal gathered from the microphone placed near the road is split into frames and converted...
-
Automatic Breath Analysis System Using Convolutional Neural Networks
PublikacjaDiseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is not uncommon for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected...
-
Automatic Breath Analysis System Using Convolutional Neural Networks
PublikacjaDiseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is common for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected as...
-
Depth Images Filtering In Distributed Streaming
PublikacjaIn this paper, we propose a distributed system for point cloud processing and transferring them via computer network regarding to effectiveness-related requirements. We discuss the comparison of point cloud filters focusing on their usage for streaming optimization. For the filtering step of the stream pipeline processing we evaluate four filters: Voxel Grid, Radial Outliner Remover, Statistical Outlier Removal and Pass Through....
-
Application of Feed Forward Neural Networks for Modeling of Heat Transfer Coefficient During Flow Condensation for Low and High Values of Saturation Temperatur
PublikacjaMost of the literature models for condensation heat transfer prediction are based on specific experimental parameters and are not general in nature for applications to fluids and non-experimental thermodynamic conditions. Nearly all correlations are created to predict data in normal HVAC conditions below 40°C. High temperature heat pumps operate at much higher parameters. This paper aims to create a general model for the calculation...
-
Collision-Free Network Exploration
PublikacjaA set of mobile agents is placed at different nodes of a n-node network. The agents synchronously move along the network edges in a collision-free way, i.e., in no round may two agents occupy the same node. In each round, an agent may choose to stay at its currently occupied node or to move to one of its neighbors. An agent has no knowledge of the number and initial positions of other agents. We are looking for the shortest possible...
-
Trust Management Method for Wireless Sensor Networks
PublikacjaA Wireless Sensor Network (WSN) is a network of spatially distributed autonomous sensors to monitor physical or environmental conditions, such as temperature, sound, pressure, etc. and to cooperatively pass their data to the main location. The first wireless network that bore any real resemblance to a modern WSN is the Sound Surveillance System (SOSUS), developed by the United States Military in the 1950s to detect and track Soviet...
-
Semantic segmentation training using imperfect annotations and loss masking
PublikacjaOne of the most significant factors affecting supervised neural network training is the precision of the annotations. Also, in a case of expert group, the problem of inconsistent data annotations is an integral part of real-world supervised learning processes, well-known to researchers. One practical example is a weak ground truth delineation for medical image segmentation. In this paper, we have developed a new method of accurate...
-
KOALA Graph Theory Internet Service
PublikacjaKOALA has been created with the idea of C++ library templates, implementing a broad set of procedures in the fields of algorithmic graph theory and network problems in discreate optimization. During the C2NIWA project, a library has been greatly ectended, the code refactored and enclosed with the internet service available in the public repository of thr project. Today it contains interconnected educational materials in the form...
-
Position Estimation in Mixed Indoor-Outdoor Environment Using Signals of Opportunity and Deep Learning Approach
PublikacjaTo improve the user's localization estimation in indoor and outdoor environment a novel radiolocalization system using deep learning dedicated to work both in indoor and outdoor environment is proposed. It is based on the radio signatures using radio signals of opportunity from LTE an WiFi networks. The measurements of channel state estimators from LTE network and from WiFi network are taken by using the developed application....
-
DEPTH IMAGES FILTERING IN DISTRIBUTED STREAMING
PublikacjaIn this paper we discuss the comparison of point cloud filters focusing on their applicability for streaming optimization. For the filtering stage within a stream pipeline processing we evaluate three filters: Voxel Grid, Pass Through and Statistical Outlier Removal. For the filters we perform series of the tests aiming at evaluation of changes of point cloud size and transmitting frequency (various fps ratio). We propose a distributed...
-
Technical Engine for Democratization of Modeling, Simulations, and Predictions
PublikacjaComputational science and engineering play a critical role in advancing both research and daily-life challenges across almost every discipline. As a society, we apply search engines, social media, and se- lected aspects of engineering to improve personal and professional growth. Recently, leveraging such aspects as behavioral model analysis, simulation, big data extraction, and human computation is gain- ing momentum. The nexus...
-
Application of ANN and PCA to two-phase flow evaluation using radioisotopes
PublikacjaIn the two-phase flow measurements a method involving the absorption of gamma radiation can be applied among others. Analysis of the signals from the scintillation probes can be used to determine the number of flow parameters and to recognize flow structure. Three types of flow regimes as plug, bubble, and transitional plug – bubble flows were considered in this work. The article shows how features of the signals in the time and...
-
System for monitoring road slippery based on CCTV cameras and convolutional neural networks
PublikacjaThe slipperiness of the surface is essential for road safety. The growing number of CCTV cameras opens the possibility of using them to automatically detect the slippery surface and inform road users about it. This paper presents a system of developed intelligent road signs, including a detector based on convolutional neural networks (CNNs) and the transferlearning method employed to the processing of images acquired with video...
-
A method of self-testing of analog circuits based on fully differential op-amps with theTCBF classifier
PublikacjaA new approach of self-testing of analog circuits based on fully differential op-amps of mixed-signal systems controlled by microcontrollers is presented. It consists of a measurement procedure and a fault diagnosis procedure. We measure voltage samples of a time response of a tested circuit on a stimulation of a unit step function given at the common-mode reference voltage input of the op-amp. The fault detection and fault localization...
-
Automatic singing quality recognition employing artificial neural networks
PublikacjaCelem artykułu jest udowodnienie możliwości automatycznej oceny jakości technicznej głosów śpiewaczych. Pokrótce zaprezentowano w nim stworzoną bazę danych głosów śpiewaczych oraz zaimplementowane parametry. Przy pomocy sztucznych sieci neuronowych zaprojektowano system decyzyjny, który oceniono w pięciostopniowej skali jakość techniczną głosu. Przy pomocy metod statystycznych udowodniono, że wyniki generowane przez ten system...
-
Music Information Retrieval – Soft Computing versus Statistics . Wyszukiwanie informacji muzycznej - algorytmy uczące versus metody statystyczne
PublikacjaMusic Information Retrieval (MIR) is an interdisciplinary research area that covers automated extraction of information from audio signals, music databases and services enabling the indexed information searching. In the early stages the primary focus of MIR was on music information through Query-by-Humming (QBH) applications, i.e. on identifying a piece of music by singing (singing/whistling), while more advanced implementations...
-
Determination of chlorine concentration using single temperature modulated semiconductor gas sensor
PublikacjaA periodic temperature modulation using sinusoidal heater voltage was applied to a commercial SnO2 semiconductor gas sensor. Resulting resistance response of the sensor was analyzed using a feature extraction method based on Fast Fourier Transformation (FFT). The amplitudes of the higher harmonics of the FFT from the dynamic nonlinear responses of measured gas were further utilized as an input for Artificial Neural...
-
Simulating Power Generation from Photovoltaics in the Polish Power System Based on Ground Meteorological Measurements—First Tests Based on Transmission System Operator Data
PublikacjaThe Polish power system is undergoing a slow process of transformation from coal to one that is renewables dominated. Although coal will remain a fundamental fuel in the coming years, the recent upsurge in installed capacity of photovoltaic (PV) systems should draw significant attention. Owning to the fact that the Polish Transmission System Operator recently published the PV hourly generation time series in this article, we aim...
-
Predicting the impact of traffic–induced vibrations on buildings using artificial neural networks
PublikacjaTraffic–induced vibrations may constitute a considerable load to a building, cause cracking of plaster, cracks in load–bearing elements or even a global structural collapse of the whole structure [1-4]. Vibrations measurements of real structures are costly and laborious, not justified in all cases. The aim of the paper is to create an original algorithm, to predict the negative dynamic impact on the examined residential building...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublikacjaRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Machine Learning Techniques in Concrete Mix Design
PublikacjaConcrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which...
-
Application of autoencoder to traffic noise analysis
PublikacjaThe aim of an autoencoder neural network is to transform the input data into a lower-dimensional code and then to reconstruct the output from this code representation. Applications of autoencoders to classifying sound events in the road traffic have not been found in the literature. The presented research aims to determine whether such an unsupervised learning method may be used for deploying classification algorithms applied to...
-
Deep learning-enabled integration of renewable energy sources through photovoltaics in buildings
PublikacjaInstalling photovoltaic (PV) systems in buildings is one of the most effective strategies for achieving sustainable energy goals and reducing carbon emissions. However, the requirement for efficient energy management, the fluctuating energy demands, and the intermittent nature of solar power are a few of the obstacles to the seamless integration of PV systems into buildings. These complexities surpass the capabilities of rule-based...
-
Pose-Invariant Face Detection by Replacing Deep Neurons with Capsules for Thermal Imagery in Telemedicine
PublikacjaAbstract— The aim of this work was to examine the potential of thermal imaging as a cost-effective tool for convenient, non- intrusive remote monitoring of elderly people in different possible head orientations, without imposing specific behavior on users, e.g. looking toward the camera. Illumination and pose invariant head tracking is important for many medical applications as it can provide information, e.g. about vital signs, sensory...
-
Project-Based Collaborative Research and Training Roadmap for Manufacturing Based on Industry 4.0
PublikacjaThe importance of the economy being up to date with the latest developments, such as Industry 4.0, is more evident than ever before. Successful implementation of Industry 4.0 principles requires close cooperation of industry and state authorities with universities. A paradigm of such cooperation is described in this paper stemming from university partners with partly overlapping and partly complementary areas of expertise in manufacturing....
-
Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks
PublikacjaIn this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....
-
THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN
PublikacjaIn the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...
-
User Orientation Detection in Relation to Antenna Geometry in Ultra-Wideband Wireless Body Area Networks Using Deep Learning
PublikacjaIn this paper, the issue of detecting a user’s position in relation to the antenna geometry in ultra-wideband (UWB) off-body wireless body area network (WBAN) communication using deep learning methods is presented. To measure the impulse response of the channel, a measurement stand consisting of EVB1000 devices and DW1000 radio modules was developed and indoor static measurement scenarios were performed. It was proven that for...
-
Energy-Efficient Self-Supervised Technique to Identify Abnormal User Over 5G Network for E-Commerce
PublikacjaWithin the realm of e-commerce networks, it is frequently observed that certain users exhibit behavior patterns that differ substantially from the normative behaviors exhibited by the majority of users. The identification of these atypical individuals and the understanding of their behavioral patterns are of significant practical significance in maintaining order on e-commerce platforms. One such method for accomplishing this...
-
Energy-Efficient Self-Supervised Technique to Identify Abnormal User Over 5G Network for E-Commerce
PublikacjaWithin the realm of e-commerce networks, it is frequently observed that certain users exhibit behavior patterns that differ substantially from the normative behaviors exhibited by the majority of users. The identification of these atypical individuals and the understanding of their behavioral patterns are of significant practical significance in maintaining order on e-commerce platforms. One such method for accomplishing this objective...
-
A new multi-process collaborative architecture for time series classification
PublikacjaTime series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head convolutional neural networks and capsule mechanism. In addition to the discovery...
-
Identyfikacja instrumentu muzycznego z nagrania fonicznego za pomocą sztucznych sieci neuronowych
PublikacjaCelem rozprawy jest zbadanie algorytmów do identyfikacji instrumentów występujących w sygnale polifonicznym z wykorzystaniem sztucznych sieci neuronowych. W części teoretycznej przywołano podstawy przetwarzania sygnałów fonicznych w kontekście ekstrakcji parametrów sygnałów wykorzystywanych w treningu sieci neuronowych. Dodatkowo dokonano analizy rozwoju metod uczenia maszynowego z uwzględnieniem podziału na sieci neuronowe pierwszej,...
-
Comparison and Analysis of Service Selection Algorithms
PublikacjaIn Service Oriented Architecture, applications are developed by integration of existing services in order to reduce development cost and time. The approach, however, requires algorithms that select appropriate services out of available, alternative ones. The selection process may consider both optimalization requirements, such as maximalization of performance, and constraint requirements, such minimal security or maximum development...
-
CNN Architectures for Human Pose Estimation from a Very Low Resolution Depth Image
PublikacjaThe paper is dedicated to proposing and evaluating a number of convolutional neural network architectures for calculating a multiple regression on 3D coordinates of human body joints tracked in a single low resolution depth image. The main challenge was to obtain a high precision in case of a noisy and coarse scan of the body, as observed by a depth sensor from a large distance. The regression network was expected to reason about...
-
Comparison of image pre-processing methods in liver segmentation task
PublikacjaAutomatic liver segmentation of Computed Tomography (CT) images is becoming increasingly important. Although there are many publications in this field there is little explanation why certain pre-processing methods were utilised. This paper presents a comparison of the commonly used approach of Hounsfield Units (HU) windowing, histogram equalisation, and a combination of these methods to try to ascertain what are the differences...
-
Multi-objective optimization of the ORC axial turbine for a waste heat recovery system working in two modes: cogeneration and condensation
PublikacjaDue to the demand of the district heating network and electric power grid ORC turbines can operate in the condensation and cogeneration modes. This approach requires the design of an expander which is characterized by high efficiency in each mode of operation. The paper is devoted to a multi-objective efficiency optimization of a one stage axial ORC turbine working on MM (Hexamethyldisiloxane). An Implicit Filtering algorithm (IF)...
-
Validation of Interpolation Algorithms for Multiscale UV-VIS Imaging Using UAV Spectrometer
PublikacjaIn this study, we present a comparison of popular methods for the interpolation of irregular spatial data in order to determine the applicability of each algorithm for hyperspectral reflectance estimation. The algorithms were benchmarked against a very high-resolution orthoimage from an RGB camera and medium-resolution satellite imagery from Sentinel-2A. We tested five interpolation algorithms: Triangulated Irregular Network (TIN),...
-
Optimal edge-coloring with edge rate constraints
PublikacjaWe consider the problem of covering the edges of a graph by a sequence of matchings subject to the constraint that each edge e appears in at least a given fraction r(e) of the matchings. Although it can be determined in polynomial time whether such a sequence of matchings exists or not [Grötschel et al., Combinatorica (1981), 169–197], we show that several questions about the length of the sequence are computationally intractable....
-
Complementarity between entanglement-assisted and quantum distributed random access code
PublikacjaCollaborative communication tasks such as random access codes (RACs) employing quantum resources have manifested great potential in enhancing information processing capabilities beyond the classical limitations. The two quantum variants of RACs, namely, quantum random access code (QRAC) and the entanglement-assisted random access code (EARAC), have demonstrated equal prowess for a number of tasks. However, there do exist specific...
-
Clothes Detection and Classification Using Convolutional Neural Networks
PublikacjaIn this paper we describe development of a computer vision system for accurate detection and classification of clothes for e-commerce images. We present a set of experiments on well established architectures of convolutional neural networks, including Residual networks, SqueezeNet and Single Shot MultiBox Detector (SSD). The clothes detection network was trained and tested on DeepFashion dataset, which contains box annotations...
-
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
PublikacjaAccurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning...