Filtry
wszystkich: 564
wybranych: 525
Wyniki wyszukiwania dla: EULER–LAGRANGE EQUATION
-
Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator
PublikacjaUsing the Mountain Pass Theorem we show that the problem \begin{equation*} \begin{cases} \frac{d}{dt}\Lcal_v(t,u(t),\dot u(t))=\Lcal_x(t,u(t),\dot u(t))\quad \text{ for a.e. }t\in[a,b]\\ u(a)=u(b)=0 \end{cases} \end{equation*} has a solution in anisotropic Orlicz-Sobolev space. We consider Lagrangian $\Lcal=F(t,x,v)+V(t,x)+\langle f(t), x\rangle$ with growth conditions determined by anisotropic G-function and some geometric conditions...
-
Existence of Two Periodic Solutions to General Anisotropic Euler-Lagrange Equations
PublikacjaAbstract. This paper is concerned with the following Euler-Lagrange system d/dtLv(t,u(t), ̇u(t)) =Lx(t,u(t), ̇u(t)) for a.e.t∈[−T,T], u(−T) =u(T), Lv(−T,u(−T), ̇u(−T)) =Lv(T,u(T), ̇u(T)), where Lagrangian is given by L=F(t,x,v) +V(t,x) +〈f(t),x〉, growth conditions aredetermined by an anisotropic G-function and some geometric conditions at infinity.We consider two cases: with and without forcing termf. Using a general version...
-
Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space
PublikacjaUsing the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.
-
Adaptation of the arbitrary Lagrange–Euler approach to fluid–solid interaction on an example of high velocity flow over thin platelet
PublikacjaThe aim of this study is to analyse the behaviour of a thin plate with air flow velocities of 0.3–0.9 Ma. Data from the experiment and numerical tools were used for the analysis. For fluid–solid interaction calculations, the arbitrary Lagrange–Euler approach was used. The results of the measurements are twofold. The first one is the measurement of the flow before and after vibrating plate, i.e. pure flow plate, and the second consists...
-
A comprehensive approach to double inverted pendulum modelling
PublikacjaThe problem of mathematical modelling and indication of properties of a DIP has been investigated in this paper. The aim of this work is to aggregate the knowledge on a DIP modelling using the Euler-Lagrange formalism in the presence of external forces and friction. To indicate the main properties important for simulation, model parameters identification and control system synthesis, analytical and numerical tools have been used....
-
On the Buckling Response of Axially Pressurized Nanotubes Based on a Novel Nonlocal Beam Theory
PublikacjaIn the present study, the buckling analysis of single-walled carbon nanotubes (SWCNT) on the basis of a new refined beam theory is analyzed. The SWCNT is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new proposed beam theory has only one unknown variable which leads to one equation similar to Euler beam theory and is also free from any shear correction factors. The equilibrium...
-
On forced vibrations of piezo-flexomagnetic nano-actuator beams
PublikacjaThe effect of excitation frequency on the piezomagnetic Euler-Bernoulli nanobeam taking the flexomagnetic material phenomenon into consideration is investigated in this chapter. The magnetization with strain gradients creates flexomagneticity. We couple simultaneously the piezomagnetic and flexomagnetic properties in an inverse magnetization. Resemble the flexoelectricity, the flexomagneticity is also size-dependent. So, it has...
-
Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order Shear Deformation Beam Theory
PublikacjaIn this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new obtained beam theory has only one variable which leads to one equation similar to the Euler beam theory and also is free of any shear correction factor. The equilibrium equation has been...
-
Nonlinear planar modeling of massive taut strings travelled by a force-driven point-mass
PublikacjaThe planar response of horizontal massive taut strings, travelled by a heavy point-mass, either driven by an assigned force, or moving with an assigned law, is studied. A kinematically exact model is derived for the free boundary problem via a variational approach, accounting for the singularity in the slope of the deflected string. Reactive forces exchanged between the point-mass and the string are taken into account via Lagrange...
-
From fluid mechanics backgrounds to modern field theory
PublikacjaOur presentation keeps a historical line of reasoning, since we start from old concepts of fluid mechanics and finish on concepts of modern field theory. We want to show that some facts from the nature phenomena, which have firstly been discovered on the ground of fluid mechanics, were next incorporated into physics and later become the important pattern for whole mathematical physics. Especially, well-known continuum models, which...
-
Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order Shear Deformation Beam Theory
PublikacjaIn this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new obtained beam theory has only one variable which lead to one equation similar to Euler beam theory and also is free of any shear correction factor. The...
-
On nonlinear dilatational strain gradient elasticity
PublikacjaWe call nonlinear dilatational strain gradient elasticity the theory in which the specific class of dilatational second gradient continua is considered: those whose deformation energy depends, in an objective way, on the gradient of placement and on the gradient of the determinant of the gradient of placement. It is an interesting particular case of complete Toupin–Mindlin nonlinear strain gradient elasticity: indeed, in it, the...
-
Hyperelastic Microcantilever AFM: Efficient Detection Mechanism Based on Principal Parametric Resonance
PublikacjaThe impetus of writing this paper is to propose an efficient detection mechanism to scan the surface profile of a micro-sample using cantilever-based atomic force microscopy (AFM), operating in non-contact mode. In order to implement this scheme, the principal parametric resonance characteristics of the resonator are employed, benefiting from the bifurcation-based sensing mechanism. It is assumed that the microcantilever is made...
-
Effect of Axial Porosities on Flexomagnetic Response of In-Plane Compressed Piezomagnetic Nanobeams
PublikacjaWe investigated the stability of an axially loaded Euler–Bernoulli porous nanobeam considering the flexomagnetic material properties. The flexomagneticity relates to the magnetization with strain gradients. Here we assume both piezomagnetic and flexomagnetic phenomena are coupled simultaneously with elastic relations in an inverse magnetization. Similar to flexoelectricity, the flexomagneticity is a size-dependent property. Therefore,...
-
Nonlocal Vibration of Carbon/Boron-Nitride Nano-hetero-structure in Thermal and Magnetic Fields by means of Nonlinear Finite Element Method
PublikacjaHybrid nanotubes composed of carbon and boron-nitride nanotubes have manifested as innovative building blocks to exploit the exceptional features of both structures simultaneously. On the other hand, by mixing with other types of materials, the fabrication of relatively large nanotubes would be feasible in the case of macroscale applications. In the current article, a nonlinear finite element formulation is employed to deal with...
-
Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect
PublikacjaIn recent years, the static and dynamic response of micro/nanobeams made of hyperelasticity materials received great attention. In the majority of studies in this area, the strain-stiffing effect that plays a major role in many hyperelastic materials has not been investigated deeply. Moreover, the influence of the size effect and large rotation for such a beam that is important for the large deformation was not addressed. This...
-
On a flexomagnetic behavior of composite structures
PublikacjaThe popularity of the studies is getting further on the flexomagnetic (FM) response of nano-electro-magneto machines. In spite of this, there are a few incompatibilities with the available FM model. This study indicates that the accessible FM model is inappropriate when considering the converse magnetization effect that demonstrates the necessity and importance of deriving a new FM relation. Additionally, the literature has neglected...
-
Equivariant Morse equation
PublikacjaThe paper is concerned with the Morse equation for flows in a representation of a compact Lie group. As a consequence of this equation we give a relationship between the equivariant Conley index of an isolated invariant set of the flow given by x˙ = − ∇f(x) and the gradient equivariant degree of ∇f. Some multiplicity results are also presented.
-
Dimensionally Consistent Nonlinear Muskingum Equation
PublikacjaAlthough the Muskingum equation was proposed nearly 75 years ago, it is still a subject of active research. Despite of its simple form, the real properties of this equation have not been comprehensively explained. This paper proposes a new interpretation of the linear McCarthy’s relation. This relation can be interpreted only together with the storage equation, whereas the Muskingum equation can be derived directly from the system...
-
Approximate solution for Euler equations of stratified water via numerical solution of coupled KdV system
PublikacjaWe consider Euler equations with stratified background state that is valid for internal water waves. The solution of the initial-boundary problem for Boussinesq approximation in the waveguide mode is presented in terms of the stream function. The orthogonal eigenfunctions describe a vertical shape of the internal wave modes and satisfy a Sturm-Liouville problem. The horizontal profile is defined by a coupled KdV system which is...
-
Some remarks on the Euler ring U(G)
PublikacjaNiech G będzie zwartą grupą Liego i niech U(G) oznacza pierściń Eulera G skonstruoawany przez tom Diecka w [5,6]. Główny wynikpracy (Twierdzenie 4.1) opisuje homomorfizm pierścienia U(SO(3)) w pierścień U(SO(2))indukowany przez włożenie grupy SO(2) w grupę SO(3).
-
Newton’s Method for the McKendrick-von Foerster Equation
PublikacjaIn the paper we study an age-structured model which describes the dynamics of one population with growth, reproduction and mortality rates. We apply Newton’smethod to the McKendrick-von Foerster equation in the semigroup setting. We prove its first- and second-order convergence.
-
Thermal ablation modeling via bioheat equation
PublikacjaWe consider Pennes’ bioheat equation and discuss an implicit numerical scheme which has better stability properties than other approaches. Our discussion concerns Carthesian geometry problems, however it carries over to spherical geometry models and more complicated shapes.
-
Balance error generated by numerical diffusion in the solution of Muskingum equation
PublikacjaIn the paper the conservative properties of the lumped hydrological models with variable parameters are discussed. It is shown that in the case of the non-linear Muskingum equation the mass balance is not satisfied. The study indicates that the mass balance errors are caused by the improper form of equation and by the numerical diffusion which is generated in the solution. It has been shown that the classical way of derivation...
-
Identification of Parameters Influencing the Accuracy of the Solution of the Nonlinear Muskingum Equation
PublikacjaTwo nonlinear versions of the Muskingum equation are considered. The difference between both equations relates to the exponent parameter. In the first version, commonly used in hydrology, this parameter is considered as free, while in the second version, it takes a value resulting from the kinematic wave theory. Consequently, the first version of the equation is dimensionally inconsistent, whereas the proposed second one is consistent. It...
-
Numerical Characterization of Thresholds for the Focusing 1d Nonlinear Schrödinger Equation
PublikacjaThe focusing nonlinear Schrödinger equation arises in various physical phenomena and it is therefore of interest to determine mathematical conditions on the initial data that guarantee whether the corresponding solution will blow up in finite time or exist globally in time. We focus on solutions to the mass‐supercritical nonlinear Schrödinger equation (1) in 1D case. In particular, we investigate numerical thresholds between blow...
-
Computational issues of solving the 1D steady gradually varied flow equation
PublikacjaIn this paper a problem of multiple solutions of steady gradually varied flow equation in the form of the ordinary differential energy equation is discussed from the viewpoint of its numerical solution. Using the Lipschitz theorem dealing with the uniqueness of solution of an initial value problem for the ordinary differential equation it was shown that the steady gradually varied flow equation can have more than one solution....
-
Euler tour lock-in problem in the rotor-router model
PublikacjaW pracy rozważano model eksploracji grafu nieskierowanego przez pojedynczego agenta, w którym sterowanie agentem odbywa się zgodnie z zasadą ''rotor-router'' (inaczej: ''Propp machine''). Porównano czas stabilizacji agenta do trajektorii w postaci cyklu Eulera dla różnych klas grafów, prowadząc rozważania w kontekście teorii gier. Przydział początkowych portów i wskaźników w modelu jest traktowany jako rozgrywka pomiędzy graczem...
-
Straightened characteristics of McKendrick-von Foerster equation
PublikacjaWe study the McKendrick-von Foerster equation with renewal (that is the age-structured model, with total population dependent coefficient and nonlinearity). By using a change of variables, the model is then transformed to a standard age-structured model in which the total population dependent coefficient of the transport term reduces to a constant 1. We use this transformation to get existence, uniqueness of solutions of the problem...
-
Anisotropic Orlicz–Sobolev spaces of vector valued functions and Lagrange equations
PublikacjaIn this paper we study some properties of anisotropic Orlicz and Orlicz–Sobolev spaces of vector valued functions for a special class of G-functions. We introduce a variational setting for a class of Lagrangian Systems. We give conditions which ensure that the principal part of variational functional is finitely defined and continuously differentiable on Orlicz–Sobolev space.
-
KOLMOGOROV EQUATION SOLUTION: MULTIPLE SCATTERING EXPANSION AND PHOTON STATISTICS EVOLUTION MODELING
PublikacjaWe consider a formulation of the Cauchy problem for the Kolmogorov equation which corresponds to a localized source of particles to be scattered by a medium with a given scattering amplitude density. The multiple scattering amplitudes are introduced and the corresponding series solution of the equation is constructed. We investigate the integral representation for the first series terms, its estimations and values of the photon...
-
Thermal ablation modeling via the bioheat equation and its numerical treatment
PublikacjaThe phenomenon of thermal ablation is described by Pennes’ bioheat equation. This model is based on Newton’s law of cooling. Many approximate methods have been considered because of the importance of this issue. We propose an implicit numerical scheme which has better stability properties than other approaches.
-
Methods of solving the Atkins equation determine shear angle with taking into consideration a modern fracture mechanics
PublikacjaIn the paper are presented methods of solving nonlinear Atkins equation . The Atkins equation describe shear angle with taking into account properties of material cutting. To solve Atkins equation has been used iterative methods: Newton method and simplified method of simple iteration. Method of simple iteration is presented in the form of Java application.
-
Estimation of a Stochastic Burgers' Equation Using an Ensemble Kalman Filter
PublikacjaIn this work, we consider a difficult problem of state estimation of nonlinear stochastic partial differential equations (SPDE) based on uncertain measurements. The presented solution uses the method of lines (MoL), which allows us to discretize a stochastic partial differential equation in a spatial dimension and represent it as a system of coupled continuous-time ordinary stochastic differential equations (SDE). For such a system...
-
Generalized Euler method for first order partial differential functional equations
PublikacjaW pracy prezentowana jest nowa klasa metod numerycznych dla nieliniowych równań różniczkowo funkcyjnych pierwszego rzędu.Rozwiązania klasyczne zagadnień początkowo brzegowych przybliżane są w tej pracy przez rozwiązania odpowiedniego układu quasilininowego równań różnicowych. Podajemy kompletną analizę zbieżności metod i pokazujemy na przykładach, iż nowa metoda jest zauważalnie lepsza niż klasyczne schematy różnicowe. Dowód stabilności...
-
Generalized Euler method for nonlinear first order partial differential equations.
PublikacjaKlasyczne rozwiązania nieliniowych równań różniczkowych cząstkowych pierwszego rzędu są aproksymowane w tej pracy za pomocą rozwiązań quasiliniowych układów równań różnicowych. Podstawowa idea pracy jest oparta na teorii charakterystyk. Podane są warunki wystarczające dla zbieżności metody. Dowód stabilności schematu różnicowego wykorzystuje metodę porównawczą z nieliniowymi oszacowaniami typu Perrona dla danych funkcji.Podane...
-
Considerations about the applicability of the Reynolds equation for analyzing high-speed near field levitation phenomena
Publikacjaequation for analyzing near field levitation (NFL) phenomena. Two separate approaches were developed, experimentally verified, and applied to meet the research objective. One was based on the Reynolds equation and the other was based on general conservation equations for fluid flow solved using computational fluid dynamic (CFD). Comparing the calculation results revealed that, for certain operating conditions, differences in the...
-
Impact of the Finite Element Mesh Structure on the Solution Accuracy of a Two-Dimensional Kinematic Wave Equation
PublikacjaThe paper presents the influence of the finite element mesh structure on the accuracy of the numerical solution of a two-dimensional linear kinematic wave equation. This equation was solved using a two-level scheme for time integration and a modified finite element method with triangular elements for space discretization. The accuracy analysis of the applied scheme was performed using a modified equation method for three different...
-
Studies of Nonlinear Sound Dynamics in Fluids Based on the Caloric Equation of State
PublikacjaThe sound speed and parameters of nonlinearity B/A, C/A in a fluid are expressed in terms of coefficients in the Taylor series expansion of an excess internal energy, in powers of excess pressure and density. That allows to conclude about features of the sound propagation in fluids, the internal energy of which is known as a function of pressure and density. The sound speed and parameters of nonlinearity in the mixture consisting...
-
On the convergence of a nonlinear finite-difference discretization of the generalized Burgers–Fisher equation
PublikacjaIn this note, we establish analytically the convergence of a nonlinear finite-difference discretization of the generalized Burgers-Fisher equation. The existence and uniqueness of positive, bounded and monotone solutions for this scheme was recently established in [J. Diff. Eq. Appl. 19, 1907{1920 (2014)]. In the present work, we prove additionally that the method is convergent of order one in time, and of order two in space. Some...
-
Non-linearity of multibody dynamic equations with respect to Lagrange multipliers: application to railway dynamics
PublikacjaPraca koncentruje się na dynamice układów wieloczłonowych z zamkniętymi łańcuchami członów. Głównym punktem zainteresowania jest modelowanie układów z występującymi nieliniowymi zależnościami opisującymi wpływ siły mnożników Lagrange'a na dynamikę układu (nieliniowe modele siły tarcia.). Aby zbudować model dynamiki układu zawierającego zamknięte łańcuchy członów, wspomniane łańcuchy są "rozcinane" i budowana jest struktura drzewa...
-
Equation of state for Eu-doped SrSi2O2N2
Publikacja -
Approximated boundary conditions of the equation of difussion
PublikacjaProblem podejmowany w pracy dotyczy warunku brzegowego w równaniach fizyki matematycznej, opisujących procesy migracji zanieczyszczeń. W szczególności skoncentrowano się na badaniu wpływu na rozwiązanie przyjmowanych w rozwiązaniach numerycznych aproksymacji ''odpływowego'' warunku brzegowego w jednowymiarowym równaniu adwekcji - dyspersji. Rozważania teoretyczne przeprowadzono w oparciu o rozwiązania analityczne oraz numeryczne...
-
The application of Monod equation to denitrification kinetics description in the moving bed biofilm reactor (MBBR)
PublikacjaIn this paper, the kinetic constants Vmax and KCOD occurring in the Monod equation, which describe the denitrification process in the moving bed, are determined. For this purpose, a laboratory moving bed biofilm reactor (MBBR) was used. The filling of the reactor consisted of EvU Perl carriers. The experiment was carried out with an excess of nitrate, and denitrification rate was dependent on the concentration of external organic...
-
Numerical Solution of the Two-Dimensional Richards Equation Using Alternate Splitting Methods for Dimensional Decomposition
PublikacjaResearch on seepage flow in the vadose zone has largely been driven by engineering and environmental problems affecting many fields of geotechnics, hydrology, and agricultural science. Mathematical modeling of the subsurface flow under unsaturated conditions is an essential part of water resource management and planning. In order to determine such subsurface flow, the two-dimensional (2D) Richards equation can be used. However,...
-
Application of the Monte Carlo algorithm for solving volume integral equation in light scattering simulations
PublikacjaVarious numerical methods were proposed for analysis of the light scattering phenomenon. Important group of these methods is based on solving the volume integral equation describing the light scattering process. The popular method from this group is the discrete dipole approximation (DDA). DDA uses various numerical algorithms to solve the discretized integral equation. In the recent years, the application of the Monte Carlo (MC)...
-
Analysis of Floodplain Inundation Using 2D Nonlinear Diffusive Wave Equation Solved with Splitting Technique
PublikacjaIn the paper a solution of two-dimensional (2D) nonlinear diffusive wave equation in a partially dry and wet domain is considered. The splitting technique which allows to reduce 2D problem into the sequence of one-dimensional (1D) problems is applied. The obtained 1D equations with regard to x and y are spatially discretized using the modified finite element method with the linear shape functions. The applied modification referring...
-
Simulation of unsteady flow over floodplain using the diffusive wave equation and the modified finite element method
PublikacjaWe consider solution of 2D nonlinear diffusive wave equation in a domain temporarily covered by a layer of water. A modified finite element method with triangular elements and linear shape functions is used for spatial discretization. The proposed modification refers to the procedure of spatial integration and leads to a more general algorithm involving a weighting parameter. The standard finite element method and the finite difference...
-
On the convergence of a finite-difference discretization à la Mickens of the generalized Burgers–Huxley equation
PublikacjaIn this note, we establish the property of convergence for a finite-difference discretization of a diffusive partial differential equation with generalized Burgers convective law and generalized Hodgkin–Huxley reaction. The numerical method was previously investigated in the literature and, amongst other features of interest, it is a fast and nonlinear technique that is capable of preserving positivity, boundedness and monotonicity....
-
Simulating propagation of coherent light in random media using the Fredholm type integral equation
PublikacjaStudying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g....