Wyniki wyszukiwania dla: bimodal smooth maps
-
Shub’s conjecture for smooth longitudinal maps of S^m
PublikacjaLet f be a smooth map of the m-dimensional sphere Sm to itself, preserving the longitudinal foliation. We estimate from below the number of fixed points of the iterates of f , reduce Shub’s conjecture for longitudinal maps to a lower dimensional classical version, and prove the conjecture in case m = 2 and in a weak form for m = 3.
-
Fixed point indices of iterated smooth maps in arbitrary dimension
PublikacjaWe give a complete description of possible sequences ofindices of iterations of f at an isolated fixed point, answering inaffirmative the Chow, Mallet-Paret and Yorke conjecture posed in[S.N. Chow, J. Mallet-Parret, J.A. Yorke, A periodic point index whichis a bifurcation invariant, in: Geometric Dynamics, Rio de Janeiro,1981, in: Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983,pp. 109-131].
-
Indices of interations and periodic points of simplical maps of smooth type
PublikacjaW pracy dowodzi się symplicjalnego odpowiednika twierdzenia Chowa, Mallet-Paret i Yorke´a. Otrzymany wynik służy do badania punktów periodycznych odwzorowań symplicjalnych gładkiego typu.
-
On the growth of the number of periodic points for smooth self maps of a compact manifold
PublikacjaDla ciągłego przekształcenia jednospójnej rozmaitości wymiaru co najmniej 3 w siebie, wykazujemy, że wzrost liczby punktów r-periodycznych w klasie homotopii może być nie szybszy niż liniowy, dla dowolnego, ustalonego r.
-
Minimal number of periodic points for smooth self-maps of RP^3
PublikacjaNiech f będzie gładkim odwzorowaniem 3-wymiarowej rzeczywistej przestrzeni rzutowej w siebie, r będzie ustaloną liczbą naturalną. W artykule wyznaczona została minimalna liczba punktów r-periodycznych w gładkiej klasie homotopii odwzorowania f.
-
Minimal number of periodic points for smooth self-maps of S^3
PublikacjaW pracy wyznaczona została najmniejsza liczba punktów periodycznych w gładkiej klasie homotopii odwzorowania sfery trójwymiarowej w siebie.
-
Minimizing the number of periodic points for smooth maps. Non-simply connected case
PublikacjaNiech f będzie gładkim odwzorowaniem zamkniętej rozmaitości o wymiarze wiekszym niż 2, a r ustaloną liczbą naturalną. W artykule zdefiniowany został niezmiennik topologiczny równy minimalnej liczbie punktów r-periodycznych w gładkiej klasie homotopii f.
-
Minimal number of periodic points of smooth boundary-preserving self-maps of simply-connected manifolds
PublikacjaLet M be a smooth compact and simply-connected manifold with simply-connected boundary ∂M, r be a fixed odd natural number. We consider f, a C1 self-map of M, preserving ∂M . Under the assumption that the dimension of M is at least 4, we define an invariant Dr(f;M,∂M) that is equal to the minimal number of r-periodic points for all maps preserving ∂M and C1-homotopic to f. As an application, we give necessary and sufficient...
-
Minimization of the number of periodic points for smooth self-maps of closed simply-connected 4-manifolds
PublikacjaLet M be a smooth closed simply-connected 4-dimensional manifold, f be a smooth self-map of M with fast grow of Lefschetz numbers and r be a product of different primes. The authors calculate the invariant equal to the minimal number of r-periodic points in the smooth homotopy class of f.
-
Estimation of the minimal number of periodic points for smooth self-maps of odd dimensional real projective spaces
PublikacjaLet f be a smooth self-map of a closed connected manifold of dimension m⩾3. The authors introduced in [G. Graff, J. Jezierski, Minimizing the number of periodic points for smooth maps. Non-simply connected case, Topology Appl. 158 (3) (2011) 276-290] the topological invariant NJD_r[f], where r is a fixed natural number, which is equal to the minimal number of r-periodic points in the smooth homotopy class of f. In this paper smooth...
-
Computations of the least number of periodic points of smooth boundary-preserving self-maps of simply-connected manifolds
PublikacjaLet $r$ be an odd natural number, $M$ a compact simply-connected smooth manifold, $\dim M\geq 4$, such that its boundary $\partial M$ is also simply-connected. We consider $f$, a $C^1$ self-maps of $M$, preserving $\partial M$. In [G. Graff and J. Jezierski, Geom. Dedicata 187 (2017), 241-258] the smooth Nielsen type periodic number $D_r(f;M,\partial M)$ was defined and proved to be equal to the minimal number of $r$-periodic points...
-
An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds
PublikacjaFor a given self-map f of M, a closed smooth connected and simply-connected manifold of dimension m 4, we provide an algorithm for estimating the values of the topological invariant D^m_r [f], which equals the minimal number of r-periodic points in the smooth homotopy class of f. Our results are based on the combinatorial scheme for computing D^m_r [f] introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013),...
-
Combinatorial scheme of finding minimal number of periodic points for smooth self-maps of simply connected manifolds
PublikacjaLet M be a closed smooth connected and simply connected manifold of dimension m at least 3, and let r be a fixed natural number. The topological invariant D^m_r [f], defined by the authors in [Forum Math. 21 (2009), 491-509], is equal to the minimal number of r-periodic points in the smooth homotopy class of f, a given self-map of M. In this paper, we present a general combinatorial scheme of computing D^m_r [f] for arbitrary dimension...
-
Minimal number of periodic points for smooth self-maps of two-holed 3-dimensional closed ball
PublikacjaDla ciągłego odwzorowania f przestrzeni określonej w tytule w siebie, które posiada rzeczywiste wartości własne na drugiej grupie homologii, wyznaczona została minimalna liczba punktów r-periodycznych w klasie wszystkich gładkich odwzorowań homotopijnych z f.
-
An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds
Publikacja -
Minimization of the number of periodic points for smooth self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers
PublikacjaLet f be a smooth self-map of m-dimensional, m ≥ 4, smooth closed connected and simply-connected manifold, r a fixed natural number. For the class of maps with periodic sequence of Lefschetz numbers of iterations the authors introduced in [Graff G., Kaczkowska A., Reducing the number of periodic points in smooth homotopy class of self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers, Ann. Polon. Math....
-
Algebraic periods and minimal number of periodic points for smooth self-maps of 1-connected 4-manifolds with definite intersection forms
PublikacjaLet M be a closed 1-connected smooth 4-manifolds, and let r be a non-negative integer. We study the problem of finding minimal number of r-periodic points in the smooth homotopy class of a given map f: M-->M. This task is related to determining a topological invariant D^4_r[f], defined in Graff and Jezierski (Forum Math 21(3):491–509, 2009), expressed in terms of Lefschetz numbers of iterations and local fixed point indices of...
-
Minimal number of periodic points for smooth self-maps of simply-connected manifolds
Dane BadawczeThe problem of finding the minimal number of periodic points in a given class of self-maps of a space is one of the central questions in periodic point theory. We consider a closed smooth connected and simply-connected manifold of dimension at least 4 and its self-map f. The topological invariant D_r[f] is equal to the minimal number of r-periodic points...
-
Estimates for minimal number of periodic points for smooth self-maps of simply-connected manifolds
Dane BadawczeWe consider a closed smooth connected and simply-connected manifold of dimension at least 4 and its self-map f. The topological invariant Dr[f] is equal to the minimal number of r-periodic points in the smooth homotopy class of f. We assume that r is odd and all coefficients b(k) of so-called periodic expansion of Lefschetz numbers of iterations are...
-
Reducing the number of periodic points in the smooth homotopy class of a self-map of a simply-connected manifold with periodic sequence of Lefschetz numbers
PublikacjaLet f be a smooth self-map of an m-dimensional (m >3) closed connected and simply-connected manifold such that the sequence of the Lefschetz num- bers of its iterations is periodic. For a fixed natural r we wish to minimize, in the smooth homotopy class, the number of periodic points with periods less than or equal to r. The resulting number is given by a topological invariant J[f] which is defned in combinatorial terms and is...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 4 and homology groups with the sum of ranks less or equal to10
Dane BadawczeAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 4 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 6 and homology groups with the sum of ranks less or equal to10
Dane BadawczeAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 6 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 5 and homology groups with the sum of ranks less or equal to10
Dane BadawczeAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 5 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 8 and homology groups with the sum of ranks less or equal to 10
Dane BadawczeAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 8 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 7 and homology groups with the sum of ranks less or equal to10
Dane BadawczeAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 7 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Bimodal deep learning model for subjectively enhanced emotion classification in films
PublikacjaThis research delves into the concept of color grading in film, focusing on how color influences the emotional response of the audience. The study commenced by recalling state-of-the-art works that process audio-video signals and associated emotions by machine learning. Then, assumptions of subjective tests for refining and validating an emotion model for assigning specific emotional labels to selected film excerpts were presented....
-
Smooth orthogonal projections on sphere.
PublikacjaWe construct a decomposition of the identity operator on the sphere S^d as a sum of smooth orthogonal projections subordinate to an open cover of S^d. We give applications of our main result in the study of function spaces and Parseval frames on the sphere.
-
Smooth Orthogonal Projections on Riemannian Manifold
PublikacjaWe construct a decomposition of the identity operator on a Riemannian manifold M as a sum of smooth orthogonal projections subordinate to an open cover of M. This extends a decomposition on the real line by smooth orthogonal projection due to Coifman and Meyer (C. R. Acad. Sci. Paris, S´er. I Math., 312(3), 259–261 1991) and Auscher, Weiss, Wickerhauser (1992), and a similar decomposition when M is the sphere by Bownik and Dziedziul (Const....
-
Marcinkiewicz Averages of Smooth Orthogonal Projections on Sphere
PublikacjaWe construct a single smooth orthogonal projection with desired localization whose average under a group action yields the decomposition of the identity operator. For any full rank lattice \Gamma ⊂ R^d , a smooth projection is localized in a neighborhood of an arbitrary precompact fundamental domain R^d / \Gamma. We also show the existence of a highly localized smooth orthogonal projection, whose Marcinkiewicz average under the...
-
A Hopf type theorem for equivariant local maps
PublikacjaWe study otopy classes of equivariant local maps and prove a Hopf type theorem for such maps in the case of a real finite-dimensional orthogonal representation of a compact Lie group.
-
Software for calculation of noise maps implemented on the supercomputer
PublikacjaThis paper presents investigation results relevant to the implementation of the algorithms for the calculation of noise maps. The aim of the implementation of the algorithms on the computer cluster is explained. Selected implementation details of the software called the noise propagation model are described. The interaction of the software with the data acquisition system is presented. Noise maps obtained by exploitation of the...
-
On structural physical approximations and entanglement breaking maps
PublikacjaVery recently, a conjecture saying that the so-called structural physical approximations (SPAs) to optimal positive maps (optimal entanglement witnesses) give entanglement breaking (EB) maps (separable states) has been posed (Korbicz et al 2008 Phys. Rev. A 78 062105). The main purpose of this contribution is to explore this subject. First, we extend the set of entanglement witnesses supporting the conjecture. Then, we ask whether...
-
Journal of Maps
Czasopisma -
AI in the creation of the satellite maps
PublikacjaSatellite and aerial imagery acquisition is a very useful source of information for remote monitoring of the Earth’s surface. Modern satellite and aerial systems provide data about the details of the site topography, its characteristics due to different criteria (type of terrain, vegetation cover, soil type and moisture content), or even information about emergency situations or disasters. The paper proposes and discusses the process...
-
Creating Acoustic Maps Employing Supercomputing Cluster
PublikacjaThe implemented online urban noise pollution monitoring system is presented with regard to its conceptual assumptions and technical realization. A concept of the noise source parameters dynamic assessment is introduced. The idea of noise modeling, based on noise emission characteristics and emission simulations, was developer and practically utilized in the system. Furthermore, the working system architecture and the data acquisition...
-
Periodic Points for Sphere Maps Preserving MonopoleFoliations
PublikacjaLet S^2 be a two-dimensional sphere. We consider two types of its foliations with one singularity and maps f:S^2→S^2 preserving these foliations, more and less regular. We prove that in both cases f has at least |deg(f)| fixed points, where deg(f) is a topological degree of f. In particular, the lower growth rate of the number of fixed points of the iterations of f is at least log|deg(f)|. This confirms the Shub’s conjecture in...
-
Improving depth maps of plants by using a set of five cameras
PublikacjaObtaining high-quality depth maps and disparity maps with the use of a stereo camera is a challenging task for some kinds of objects. The quality of these maps can be improved by taking advantage of a larger number of cameras. The research on the usage of a set of five cameras to obtain disparity maps is presented. The set consists of a central camera and four side cameras. An algorithm for making disparity maps called multiple...
-
Bimodal Emotion Recognition Based on Vocal and Facial Features
PublikacjaEmotion recognition is a crucial aspect of human communication, with applications in fields such as psychology, education, and healthcare. Identifying emotions accurately is challenging, as people use a variety of signals to express and perceive emotions. In this study, we address the problem of multimodal emotion recognition using both audio and video signals, to develop a robust and reliable system that can recognize emotions...
-
Data visualization of marine objects on digital maps
PublikacjaThe paper presents the implementation of two multithreaded applications for data visualization of marine objects written in C#, designed to run on operator consoles with 32-bit or 64-bit Windows 7 OS. The article describes the most important functionality and features of the developed C# .NET user controls for data visualization on digital maps and in the configurable tables.
-
Periodic points of latitudinal maps of the $m$-dimensional sphere
PublikacjaLet f be a smooth self-map of the m-dimensional sphere Sm. Under the assumption that f preserves latitudinal foliations with the fibres S1, we estimate from below the number of fixed points of the iterates of f. The paper generalizes the results obtained by Pugh and Shub and by Misiurewicz.
-
Lefschetz periodic point free self-maps of compact manifolds
PublikacjaLet f be a self-map of a compact connected manifold M. We characterize Lefschetz periodic point free continuous self-maps of M for several classes of manifolds and generalize the results of Guirao and Llibre [J.L.G. Guirao, J. Llibre, On the Lefschetz periodic point free continuous self-maps on connected compact manifolds,
-
Music Mood Visualization Using Self-Organizing Maps
PublikacjaDue to an increasing amount of music being made available in digital form in the Internet, an automatic organization of music is sought. The paper presents an approach to graphical representation of mood of songs based on Self-Organizing Maps. Parameters describing mood of music are proposed and calculated and then analyzed employing correlation with mood dimensions based on the Multidimensional Scaling. A map is created in which...
-
Lefschetz periodic point free self-maps of compact manifolds
PublikacjaLet f be a self-map of a compact connected manifold M. We characterize Lefschetz periodic point free continuous self-maps of M for several classes of manifolds and generalize the results of Guirao and Llibre [J.L.G. Guirao, J. Llibre, On the Lefschetz periodic point free continuous self-maps on connected compact manifolds, Topology Appl. 158 (16) (2011) 2165-2169].
-
Application of two-dimensional intensity maps in high-accuracy polarimetry
PublikacjaWe propose the analysis of 2D intensity contour maps which is based on the optical transmission function for the polarizer-specimen-analyzer system. A small modification of the high-accuracy universal polarimeter (HAUP) technique was used to measure the intensity maps (HAUP maps) and determine the phase retardation, linear dichroism (LD) parameters, and multiple light reflection contribution in uniaxial crystals. We have performed...
-
Generalized Gradient Equivariant Multivalued Maps, Approximation and Degree
PublikacjaConsider the Euclidean space Rn with the orthogonal action of a compact Lie group G. We prove that a locally Lipschitz G-invariant mapping f from Rn to R can be uniformly approximated by G-invariant smooth mappings g in such a way that the gradient of g is a graph approximation of Clarke’s generalized gradient of f . This result enables a proper development of equivariant gradient degree theory for a class of set-valued gradient...
-
The Hopf type theorem for equivariant gradient local maps
PublikacjaWe construct a degree-type otopy invariant for equivariant gradient local maps in the case of a real finite-dimensional orthogonal representation of a compact Lie group. We prove that the invariant establishes a bijection between the set of equivariant gradient otopy classes and the direct sum of countably many copies of Z.
-
Journal of Smooth Muscle Research
Czasopisma -
Smooth Particle Hydrodynamics (SPH) approach in simulating large penetration into soil
PublikacjaA study of Smooth Particle Hydrodynamics (SPH) approach for predicting large soil deformation is presented. Theoretical basics of SPH method, including the equations governing, discussion of the importance of smoothing function length, contact formulation, boundary treatment and finally utilization in hydrocodes simulations are presented. An application of SPH to a real case of large penetrations (crater creating) into soil caused...
-
Smooth start for strategry game development supported by XNA framework
PublikacjaTo attract young and casual game developers, Microsoft created a set of libraries oriented towards easier game development and end-product management. The aim of XNA Framework is to provide a unified software development environment for creating games for both PC's and dedicated platforms like XBOX consoles or mobile phones capable of 3D acceleration. The use of modern, object oriented languages available for the .NET platform...
-
Fast Algorithms for Identification of Time-Varying Systems with Both Smooth and Discontinuous Parameter Changes
PublikacjaThe problem of noncausal identification of a time-varying linear system subject to both smooth and occasional jump-type changes is considered and solved using the preestimation technique combined with the basis function approach to modeling the variability of system parameters. The proposed estimation algorithms yield very good parameter tracking results and are computationally attractive.