Wyniki wyszukiwania dla: DEEP-LEARNING, NEURAL NETWORKS - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: DEEP-LEARNING, NEURAL NETWORKS

Wyniki wyszukiwania dla: DEEP-LEARNING, NEURAL NETWORKS

  • ANN for human pose estimation in low resolution depth images

    Publikacja

    - Rok 2017

    The paper presents an approach to localize human body joints in 3D coordinates based on a single low resolution depth image. First a framework to generate a database of 80k realistic depth images from a 3D body model is described. Then data preprocessing and normalization procedure, and DNN and MLP artificial neural networks architectures and training are presented. The robustness against camera distance and image noise is analysed....

    Pełny tekst do pobrania w portalu

  • Comparison of selected electroencephalographic signal classification methods

    A variety of methods exists for electroencephalographic (EEG) signals classification. In this paper, we briefly review selected methods developed for such a purpose. First, a short description of the EEG signal characteristics is shown. Then, a comparison between the selected EEG signal classification methods, based on the overview of research studies on this topic, is presented. Examples of methods included in the study are: Artificial...

  • Chemometrics for Selection, Prediction, and Classification of Sustainable Solutions for Green Chemistry—A Review

    In this review, we present the applications of chemometric techniques for green and sustainable chemistry. The techniques, such as cluster analysis, principal component analysis, artificial neural networks, and multivariate ranking techniques, are applied for dealing with missing data, grouping or classification purposes, selection of green material, or processes. The areas of application are mainly finding sustainable solutions...

    Pełny tekst do pobrania w portalu

  • Mobilenet-V2 Enhanced Parkinson's Disease Prediction with Hybrid Data Integration

    Publikacja

    - Rok 2024

    This study investigates the role of deep learning models, particularly MobileNet-v2, in Parkinson's Disease (PD) detection through handwriting spiral analysis. Handwriting difficulties often signal early signs of PD, necessitating early detection tools due to potential impacts on patients' work capacities. The study utilizes a three-fold approach, including data augmentation, algorithm development for simulated PD image datasets,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Semantic segmentation training using imperfect annotations and loss masking

    One of the most significant factors affecting supervised neural network training is the precision of the annotations. Also, in a case of expert group, the problem of inconsistent data annotations is an integral part of real-world supervised learning processes, well-known to researchers. One practical example is a weak ground truth delineation for medical image segmentation. In this paper, we have developed a new method of accurate...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • TensorHive: Management of Exclusive GPU Access for Distributed Machine Learning Workloads

    TensorHive is a tool for organizing work of research and engineering teams that use servers with GPUs for machine learning workloads. In a comprehensive web interface, it supports reservation of GPUs for exclusive usage, hardware monitoring, as well as configuring, executing and queuing distributed computational jobs. Focusing on easy installation and simple configuration, the tool automatically detects the available computing...

    Pełny tekst do pobrania w portalu

  • Examining Classifiers Applied to Static Hand Gesture Recognition in Novel Sound Mixing System

    The main objective of the chapter is to present the methodology and results of examining various classifiers (Nearest Neighbor-like algorithm with non-nested generalization (NNge), Naive Bayes, C4.5 (J48), Random Tree, Random Forests, Artificial Neural Networks (Multilayer Perceptron), Support Vector Machine (SVM) used for static gesture recognition. A problem of effective gesture recognition is outlined in the context of the system...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Music Mood Visualization Using Self-Organizing Maps

    Due to an increasing amount of music being made available in digital form in the Internet, an automatic organization of music is sought. The paper presents an approach to graphical representation of mood of songs based on Self-Organizing Maps. Parameters describing mood of music are proposed and calculated and then analyzed employing correlation with mood dimensions based on the Multidimensional Scaling. A map is created in which...

    Pełny tekst do pobrania w portalu

  • Study on transmission quality in cellular 4G and 5G networks between 2019–2021: Impact of the COVID-19 pandemic on the level of provided services by operating base transceiver stations

    The COVID-19 pandemic has significantly limited user mobility, not least among students. Remote learning had a particular impact on resource allocation in relation to using terrestrial cellular networks, especially 4G systems in urban agglomerations. This paper presents the results of a quality evaluation of an outdoor environment, carried out between 2019 and 2021 on the campus of a technical university. Annual studies are conducted...

    Pełny tekst do pobrania w portalu

  • Computationally Efficient Surrogate-Assisted Design of Pyramidal-Shaped 3D Reflectarray Antennas

    Publikacja

    - IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION - Rok 2022

    Reflectarrays (RAs) have been attracting considerable interest in the recent years due to their appealing features, in particular, a possibility of realizing pencil-beam radiation patterns, as in the phased arrays, but without the necessity of incorporating the feeding networks. These characteristics make them attractive solutions, among others, for satellite communications or mobile radar antennas. Notwithstanding, available microstrip...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Experimental and Theoretical Screening for Green Solvents Improving Sulfamethizole Solubility

    Publikacja

    - Materials - Rok 2021

    Solubility enhancement of poorly soluble active pharmaceutical ingredients is of crucial importance for drug development and processing. Extensive experimental screening is limited due to the vast number of potential solvent combinations. Hence, theoretical models can offer valuable hints for guiding experiments aimed at providing solubility data. In this paper, we explore the possibility of applying quantum-chemistry-derived...

    Pełny tekst do pobrania w portalu

  • Machine learning-based seismic response and performance assessment of reinforced concrete buildings

    Complexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...

    Pełny tekst do pobrania w portalu

  • Topology recognition and leader election in colored networks

    Publikacja

    Topology recognition and leader election are fundamental tasks in distributed computing in networks. The first of them requires each node to find a labeled isomorphic copy of the network, while the result of the second one consists in a single node adopting the label 1 (leader), with all other nodes adopting the label 0 and learning a path to the leader. We consider both these problems in networks whose nodes are equipped with...

    Pełny tekst do pobrania w portalu

  • A Mammography Data Management Application for Federated Learning

    Publikacja

    This study aimed to develop and assess an application designed to enhance the management of a local client database consisting of mammographic images with a focus on ensuring that images are suitably and uniformly prepared for federated learning applications. The application supports a comprehensive approach, starting with a versatile image-loading function that supports DICOM files from various medical imaging devices and settings....

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Optical Sensor Based Gestures Inference Using Recurrent Neural Network in Mobile Conditions

    In this paper the implementation of recurrent neural network models for hand gesture recognition on edge devices was performed. The models were trained with 27 hand gestures recorded with the use of a linear optical sensor consisting of 8 photodiodes and 4 LEDs. Different models, trained off-line, were tested in terms of different network topologies (different number of neurons and layers) and different effective sampling frequency...

  • Medical Image Dataset Annotation Service (MIDAS)

    Publikacja

    - Rok 2020

    MIDAS (Medical Image Dataset Annotation Service) is a custom-tailored tool for creating and managing datasets either for deep learning, as well as machine learning or any form of statistical research. The aim of the project is to provide one-fit-all platform for creating medical image datasets that could easily blend in hospital's workflow. In our work, we focus on the importance of medical data anonimization, discussing the...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Dynamic Bankruptcy Prediction Models for European Enterprises

    This manuscript is devoted to the issue of forecasting corporate bankruptcy. Determining a firm’s bankruptcy risk is one of the most interesting topics for investors and decision-makers. The aim of the paper is to develop and to evaluate dynamic bankruptcy prediction models for European enterprises. To conduct this objective, four forecasting models are developed with the use of four different methods—fuzzy sets, recurrent and...

    Pełny tekst do pobrania w portalu

  • Fragmentation of Hydrographic Big Data Into Subsets During Reduction Process

    Publikacja

    - Rok 2017

    The article presented problems of fragmentation of hydrographic big data into smaller subsets during reduction process. Data reduction is a processing of reduce the value of the data set, in order to make them easier and more effective for the goals of the analysis. The main aim of authors is to create new reduction method. The article presented the first stage of this method – fragmentation of bathymetric data into subsets. It...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Residual MobileNets

    As modern convolutional neural networks become increasingly deeper, they also become slower and require high computational resources beyond the capabilities of many mobile and embedded platforms. To address this challenge, much of the recent research has focused on reducing the model size and computational complexity. In this paper, we propose a novel residual depth-separable convolution block, which is an improvement of the basic...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Fault detection in measuring systems of power plants

    Publikacja

    This paper describes possibility of forming diagnostic relations based on application of the artifical neural networks (ANNs), intended for the identifying of degradation of measuring instruments used in developed power systems. As an example a steam turbine high-power plant was used. And, simulative calculations were applied to forming diagnostic neural relations. Both degradation of the measuring instruments and simultaneously...

    Pełny tekst do pobrania w portalu

  • Application of autoencoder to traffic noise analysis

    The aim of an autoencoder neural network is to transform the input data into a lower-dimensional code and then to reconstruct the output from this code representation. Applications of autoencoders to classifying sound events in the road traffic have not been found in the literature. The presented research aims to determine whether such an unsupervised learning method may be used for deploying classification algorithms applied to...

    Pełny tekst do pobrania w portalu

  • Urban scene semantic segmentation using the U-Net model

    Publikacja

    - Rok 2023

    Vision-based semantic segmentation of complex urban street scenes is a very important function during autonomous driving (AD), which will become an important technology in industrialized countries in the near future. Today, advanced driver assistance systems (ADAS) improve traffic safety thanks to the application of solutions that enable detecting objects, recognising road signs, segmenting the road, etc. The basis for these functionalities...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • LDRAW based positional renders of LEGO bricks

    Dane Badawcze
    open access
    • M. Wysoczańska
    • M. Rutkiewicz
    • K. Mastalerz
    • T. Boiński
    - seria: LEGO - partial

    243 different LEGO bricks renders of size 250x250 in 5 colors in 120 viewing angles stored as JPEG images. The renders are used to train neural networks for bricks recognition. All images were generated using L3P (http://www.hassings.dk/l3/l3p.html) and POV-Ray (http://www.povray.org/) tools and were based on the 3D models from LDraw (https://www.ldraw.org/)...

  • Smart Knowledge Engineering for Cognitive Systems: A Brief Overview

    Publikacja

    - CYBERNETICS AND SYSTEMS - Rok 2022

    Cognition in computer sciences refers to the ability of a system to learn at scale, reason with purpose, and naturally interact with humans and other smart systems, such as humans do. To enhance intelligence, as well as to introduce cognitive functions into machines, recent studies have brought humans into the loop, turning the system into a human–AI hybrid. To effectively integrate and manipulate hybrid knowledge, suitable technologies...

    Pełny tekst do pobrania w portalu

  • Visual Content Learning in a Cognitive Vision Platform for Hazard Control (CVP-HC)

    Publikacja

    - CYBERNETICS AND SYSTEMS - Rok 2019

    This work is part of an effort for the development of a Cognitive Vision Platform for Hazard Control (CVP-HC) for applications in industrial workplaces, adaptable to a wide range of environments. The paper focuses on hazards resulted from the nonuse of personal protective equipment (PPE). Given the results of previous analysis of supervised techniques for the problem of classification of a few PPE (boots, hard hats, and gloves...

    Pełny tekst do pobrania w portalu

  • Dynamic GPU power capping with online performance tracing for energy efficient GPU computing using DEPO tool

    GPU accelerators have become essential to the recent advance in computational power of high- performance computing (HPC) systems. Current HPC systems’ reaching an approximately 20–30 mega-watt power demand has resulted in increasing CO2 emissions, energy costs and necessitate increasingly complex cooling systems. This is a very real challenge. To address this, new mechanisms of software power control could be employed. In this...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Machine Learning and Text Analysis in an Artificial Intelligent System for the Training of Air Traffic Controllers

    Publikacja
    • T. Shmelova
    • Y. Sikirda
    • N. Rizun
    • V. Lazorenko
    • V. Kharchenko

    - Rok 2020

    This chapter presents the application of new information technology in education for the training of air traffic controllers (ATCs). Machine learning, multi-criteria decision analysis, and text analysis as the methods of artificial intelligence for ATCs training have been described. The authors have made an analysis of the International Civil Aviation Organization documents for modern principles of ATCs education. The prototype...

    Pełny tekst do pobrania w portalu

  • Hybrid DUMBRA: an efficient QoS routing algorithm for networks with DiffServ architecture

    Publikacja

    - Rok 2011

    Dynamic routing is very important issue of current packet networks. It may support the QoS and help utilize available network resources. Unfortunately current routing mechanisms are not sufficient to fully support QoS. Although many research has been done in this area no generic QoS routing algorithm has been proposed that could be used across all network structures. Existing QoS routing algorithms are either dedicated to limited...

  • An Analysis of Neural Word Representations for Wikipedia Articles Classification

    Publikacja

    - CYBERNETICS AND SYSTEMS - Rok 2019

    One of the current popular methods of generating word representations is an approach based on the analysis of large document collections with neural networks. It creates so-called word-embeddings that attempt to learn relationships between words and encode this information in the form of a low-dimensional vector. The goal of this paper is to examine the differences between the most popular embedding models and the typical bag-of-words...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Rotor Blade Geometry Optimisation in Kaplan Turbine

    Publikacja

    The paper presents the description of method and results of rotor blade shape optimisation. The rotor blading constitutes a part ofturbine flow path. Optimisation consists in selection of the shape that minimises ratio of polytrophic loss. Shape of the blade isdefined by the mean camber line and thickness of the airfoil. Thickness is distributed around the camber line based on the ratio ofdistribution. Global optimisation was done...

    Pełny tekst do pobrania w portalu

  • Obtaining a Well-Trained Artificial Intelligence Algorithm from Cross-Validation in Endoscopy

    Publikacja

    The article shortly discusses endoscopic video analysis problems and artificial intelligence algorithms supporting it. The most common method of efficiency testing of these algorithms is to perform intensive cross-validation. This allows for accurately evaluate their performance of generalization. One of the main problems of this procedure is that there is no simple and universal way of obtaining a specific instance of a well-trained...

  • Multimodal Approach For Polysensory Stimulation And Diagnosis Of Subjects With Severe Communication Disorders

    Publikacja

    is evaluated on 9 patients, data analysis methods are described, and experiments of correlating Glasgow Coma Scale with extracted features describing subjects performance in therapeutic exercises exploiting EEG and eyetracker are presented. Performance metrics are proposed, and k-means clusters used to define concepts for mental states related to EEG and eyetracking activity. Finally, it is shown that the strongest correlations...

    Pełny tekst do pobrania w portalu

  • Analyzing the Effectiveness of the Brain–Computer Interface for Task Discerning Based on Machine Learning

    Publikacja

    The aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was...

    Pełny tekst do pobrania w portalu

  • Applying Decisional DNA to Internet of Things: The Concept and Initial Case Study

    Publikacja

    - CYBERNETICS AND SYSTEMS - Rok 2015

    In this article, we present a novel approach utilizing Decisional DNA to help the Internet of Things capture decisional events and reuse them for decision making in future operations. The Decisional DNA is a domain-independent, standard and flexible knowledge representation structure that allows its domains to acquire, store, and share experiential knowledge and formal decision events in an explicit way. We apply this approach...

    Pełny tekst do pobrania w portalu

  • A Triplet-Learnt Coarse-to-Fine Reranking for Vehicle Re-identification

    Publikacja

    - Rok 2020

    Vehicle re-identification refers to the task of matching the same query vehicle across non-overlapping cameras and diverse viewpoints. Research interest on the field emerged with intelligent transportation systems and the necessity for public security maintenance. Compared to person, vehicle re-identification is more intricate, facing the challenges of lower intra-class and higher inter-class similarities. Motivated by deep...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Multiclass AdaBoost Classifier Parameter Adaptation for Pattern Recognition

    The article presents the problem of parameter value selection of the multiclass ``one against all'' approach of an AdaBoost algorithm in tasks of object recognition based on two-dimensional graphical images. AdaBoost classifier with Haar features is still used in mobile devices due to the processing speed in contrast to other methods like deep learning or SVM but its main drawback is the need to assembly the results of binary...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Artificial intelligence for software development — the present and the challenges for the future

    Since the time when first CASE (Computer-Aided Software Engineering) methods and tools were developed, little has been done in the area of automated creation of code. CASE tools support a software engineer in creation the system structure, in defining interfaces and relationships between software modules and, after the code has been written, in performing testing tasks on different levels of detail. Writing code is still the task...

    Pełny tekst do pobrania w portalu

  • Autonomous port management based AGV path planning and optimization via an ensemble reinforcement learning framework

    Publikacja

    - OCEAN & COASTAL MANAGEMENT - Rok 2024

    The rapid development of shipping trade pushes automated container terminals toward the direction of intelligence, safety and efficiency. In particular, the formulation of AGV scheduling tasks and the safety and stability of transportation path is an important part of port operation and management, and it is one of the basic tasks to build an intelligent port. Existing research mainly focuses on collaborative operation between...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Identification of the Contamination Source Location in the Drinking Water Distribution System Based on the Neural Network Classifier

    Publikacja

    The contamination ingression to the Water Distribution System (WDS) may have a major impact on the drinking water consumers health. In the case of the WDS contamination the data from the water quality sensors may be efficiently used for the appropriate disaster management. In this paper the methodology based on the Learning Vector Quantization (LVQ) neural network classifier for the identification of the contamination source location...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Vehicle detector training with labels derived from background subtraction algorithms in video surveillance

    Publikacja

    Vehicle detection in video from a miniature station- ary closed-circuit television (CCTV) camera is discussed in the paper. The camera provides one of components of the intelligent road sign developed in the project concerning the traffic control with the use of autonomous devices being developed. Modern Convolutional Neural Network (CNN) based detectors need big data input, usually demanding their manual labeling. In the presented...

  • Data-driven, probabilistic model for attainable speed for ships approaching Gdańsk harbour

    Publikacja

    The growing demand for maritime transportation leads to increased traffic in ports. From this arises the need to observe the consequences of the specific speed ships reach when approaching seaports. However, usually the analyzed cases refer only to the statistical evaluation of the studied phenomenon or to the empirical modelling, ignoring the mutual influence of variables such as ship type, length or weather conditions. In this...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Deep Features Class Activation Map for Thermal Face Detection and Tracking

    Publikacja

    - Rok 2017

    Recently, capabilities of many computer vision tasks have significantly improved due to advances in Convolutional Neural Networks. In our research, we demonstrate that it can be also used for face detection from low resolution thermal images, acquired with a portable camera. The physical size of the camera used in our research allows for embedding it in a wearable device or indoor remote monitoring solution for elderly and disabled...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Automatic Rhythm Retrieval from Musical Files

    Publikacja

    - Rok 2008

    This paper presents a comparison of the effectiveness of two computational intelligence approaches applied to the task of retrieving rhythmic structure from musical files. The method proposed by the authors of this paper generates rhythmic levels first, and then uses these levels to compose rhythmic hypotheses. Three phases: creating periods, creating simplified hypotheses and creating full hypotheses are examined within this study....

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Vehicle detector training with minimal supervision

    Publikacja

    Recently many efficient object detectors based on convolutional neural networks (CNN) have been developed and they achieved impressive performance on many computer vision tasks. However, in order to achieve practical results, CNNs require really large annotated datasets for training. While many such databases are available, many of them can only be used for research purposes. Also some problems exist where such datasets are not...

  • Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance

    Publikacja

    - Journal of Water Process Engineering - Rok 2021

    Wastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP...

    Pełny tekst do pobrania w portalu

  • High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams?

    Publikacja

    - Brain: A Journal of Neurology - Rok 2024

    Despite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected...

    Pełny tekst do pobrania w portalu

  • Automated Parking Management for Urban Efficiency: A Comprehensive Approach

    Publikacja

    - Rok 2024

    Effective parking management is essential for ad-dressing the challenges of traffic congestion, city logistics, and air pollution in densely populated urban areas. This paper presents an algorithm designed to optimize parking management within city environments. The proposed system leverages deep learning models to accurately detect and classify street elements and events. Various algorithms, including automatic segmentation of...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Toward Robust Pedestrian Detection With Data Augmentation

    Publikacja

    In this article, the problem of creating a safe pedestrian detection model that can operate in the real world is tackled. While recent advances have led to significantly improved detection accuracy on various benchmarks, existing deep learning models are vulnerable to invisible to the human eye changes in the input image which raises concerns about its safety. A popular and simple technique for improving robustness is using data...

    Pełny tekst do pobrania w portalu

  • Reactivation of seizure‐related changes to interictal spike shape and synchrony during postseizure sleep in patients

    Publikacja
    • M. R. Bower
    • M. T. Kucewicz
    • E. K. St. Louis
    • F. Meyer
    • W. R. Marsh
    • M. Stead
    • G. A. Worrell

    - EPILEPSIA - Rok 2017

    OBJECTIVE: Local field potentials (LFPs) arise from synchronous activation of millions of neurons, producing seemingly consistent waveform shapes and relative synchrony across electrodes. Interictal spikes (IISs) are LFPs associated with epilepsy that are commonly used to guide surgical resection. Recently, changes in neuronal firing patterns observed in the minutes preceding seizure onset were found to be reactivated during postseizure...

    Pełny tekst do pobrania w portalu

  • MobileNet family tailored for Raspberry Pi

    With the advances in systems-on-a-chip technologies, there is a growing demand to deploy intelligent vision systems on low-cost microcomputers. To address this challenge, much of the recent research has focused on reducing the model size and computational complexity of contemporary convolutional neural networks (CNNs). The state-of-the-art lightweight CNN is MobileNetV3. However, it was designed to achieve a good trade-off between...

    Pełny tekst do pobrania w portalu