Filtry
wszystkich: 1281
-
Katalog
- Publikacje 936 wyników po odfiltrowaniu
- Czasopisma 181 wyników po odfiltrowaniu
- Konferencje 26 wyników po odfiltrowaniu
- Osoby 52 wyników po odfiltrowaniu
- Projekty 8 wyników po odfiltrowaniu
- Kursy Online 62 wyników po odfiltrowaniu
- Wydarzenia 7 wyników po odfiltrowaniu
- Dane Badawcze 9 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: CONTINUAL LEARNING · REPRESENTATION LEARNING
-
Techniczne aspekty implementacji nowoczesnej platformy e-learningowej
PublikacjaZaprezentowano aspekty techniczne implementacji nowoczesnej platformy nauczania zdalnego. Omówiono obszary funkcjonalne takie jak: system zarządzania nauczaniem, serwis informacyjny, dodatkowe oprogramowanie dydaktyczne oraz kolekcja zasobów multimedialnych. Przybliżono zagadnienia związane z bezpieczeństwem takiej platformy. Na końcu przedstawiono parametry techniczne wdrożonej na Politechnice Gdańskiej platformy eNauczanie.
-
Olgun Aydin Dr
OsobyOlgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Senior Data Scientist in PwC Poland, gives lectures in Gdansk University of Technology in Poland and member of WhyR? Foundation. Olgun is a very big fan of R and author of the book called “R Web Scraping Quick Start Guide” , two video courses are called “Deep Dive into Statistical Modelling using R” and “Applied Machine Learning and Deep...
-
Instructor Presence in Video Lectures: Preliminary Findings From an Online Experiment
PublikacjaMotivation. Despite the widespread use of video lectures in online and blended learning environments, there is still debate whether the presence of an instructor in the video helps or hinders learning. According to social agency theory, seeing the instructor makes learners believe that s/he is personally teaching them, which leads to deeper cognitive processing and, in turn, better learning outcomes. Conversely, according to cognitive...
-
Mikroekonomia_2 lato 2023/24
Kursy OnlineKontynuacja zajęć z mikroekonomii z sem. 1. Prowadząca dr Aniela Mikulska. Uczymy się wg metody flip blended learning.
-
An Automated Method for Biometric Handwritten Signature Authentication Employing Neural Networks
PublikacjaHandwriting biometrics applications in e-Security and e-Health are addressed in the course of the conducted research. An automated graphomotor analysis method for the dynamic electronic representation of the handwritten signature authentication was researched. The developed algorithms are based on dynamic analysis of electronically handwritten signatures employing neural networks. The signatures were acquired with the use of the...
-
Information Systems Security 2023
Kursy OnlineThe e-learning course for the Information Systems Security, in the field of Electronics and Telecommunications in the II degree studies (2nd year of studies, 3rd semester).
-
Information Systems Security 2023/2024
Kursy OnlineThe e-learning course for the Information Systems Security, in the field of Electronics and Telecommunications in the II degree studies (2nd year of studies, 3rd semester).
-
Active Control of Highly Autocorrelated Machinery Noise in Multivariate Nonminimum Phase Systems
PublikacjaIn this paper, a novel multivariate active noise control scheme, designed to attenuate disturbances with high autocorrelation characteristics and preserve background signals, is proposed. The algorithm belongs to the class of feedback controllers and, unlike the popular feedforward FX-LMS approach, does not require availability of a reference signal. The proposed approach draws its inspiration from the iterative learning control...
-
Farzin Kazemi
OsobyHis main research areas are seismic performance assessment of structures and seismic hazard analysis in earthquake engineering. He performed a comprehensive study on the effect of pounding phenomenon and proposed modification factors to modify the seismic collapse capacity of structures or predict the seismic collapse capacity of structures which were retrofitted with linear and nonlinear Fluid Viscous Dampers (FVDs). His current...
-
Review of the Complexity of Managing Big Data of the Internet of Things
PublikacjaTere is a growing awareness that the complexity of managing Big Data is one of the main challenges in the developing feld of the Internet of Tings (IoT). Complexity arises from several aspects of the Big Data life cycle, such as gathering data, storing them onto cloud servers, cleaning and integrating the data, a process involving the last advances in ontologies, such as Extensible Markup Language (XML) and Resource Description...
-
Uczenie maszynowe do samoorganizacji systemów rozproszonych w zastosowaniach gospodarczych
PublikacjaW pracy omówiono uczenie maszynowe do samoorganizacji systemów rozproszonych w zastosowaniach gospodarczych ze szczególnym uwzględnieniem sieci neuronowych do predykcji finansowych oraz szacowania ratingu przedsiębiorstw. Oprócz sieci neuronowych, istotną rolę w przygotowaniu i testowaniu informatycznych systemów finansowych może pełnić programowanie genetyczne. Z tego powodu omówiono uczenie maszynowe w aplikacjach konstruowanych...
-
Detection of Lexical Stress Errors in Non-Native (L2) English with Data Augmentation and Attention
PublikacjaThis paper describes two novel complementary techniques that improve the detection of lexical stress errors in non-native (L2) English speech: attention-based feature extraction and data augmentation based on Neural Text-To-Speech (TTS). In a classical approach, audio features are usually extracted from fixed regions of speech such as the syllable nucleus. We propose an attention-based deep learning model that automatically de...
-
Human Feedback and Knowledge Discovery: Towards Cognitive Systems Optimization
PublikacjaCurrent computer vision systems, especially those using machine learning techniques are data-hungry and frequently only perform well when dealing with patterns they have seen before. As an alternative, cognitive systems have become a focus of attention for applications that involve complex visual scenes, and in which conditions may vary. In theory, cognitive applications uses current machine learning algorithms, such as deep learning,...
-
Towards New Mappings between Emotion Representation Models
PublikacjaThere are several models for representing emotions in affect-aware applications, and available emotion recognition solutions provide results using diverse emotion models. As multimodal fusion is beneficial in terms of both accuracy and reliability of emotion recognition, one of the challenges is mapping between the models of affect representation. This paper addresses this issue by: proposing a procedure to elaborate new mappings,...
-
Analysis-by-synthesis paradigm evolved into a new concept
PublikacjaThis work aims at showing how the well-known analysis-by-synthesis paradigm has recently been evolved into a new concept. However, in contrast to the original idea stating that the created sound should not fail to pass the foolproof synthesis test, the recent development is a consequence of the need to create new data. Deep learning models are greedy algorithms requiring a vast amount of data that, in addition, should be correctly...
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublikacjaThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
Chosen Methods Supporting Didacts of Descriptive Geometry
PublikacjaThe article presents reflections on the practical ways of supporting the teaching processes of descriptive geometry in the context of psychological theories of learning and motivation.
-
THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN
PublikacjaIn the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...
-
Tacit knowledge acquisition & sharing, and its influence on innovations: A Polish/US cross-country study
PublikacjaThis study measures the relationship between tacit knowledge sharing and innovation in the Polish (n=350) and US (n=379) IT industries. Conceptually, the study identifies the potential sources of tacit knowledge development by individuals. That is, the study examines how “learning by doing” and “learning by interaction” lead to a willingness to share knowledge and, as a consequence, to support process and product/service innovation....
-
Podejście nauczycieli akademickich do rozwoju narzędzi e-learningowych na wyższych uczelniach technicznych
PublikacjaPlatforma edukacyjna na uczelni wyższej stała się już standardem. Jest wyznacznikiem nowoczesno- ści danej uczelni. Wpływa na jej konkurencyjność. Mimo to, istnieje przekonanie że środowisko nauczycieli akademickich nie jest gotowe do akceptacji nowych środków nauczania. Postanowiono zbadać ten problem. Artykuł zawiera odpowiedź na pytanie jaki stosunek do metod e-nauczania panuje wśród nauczycieli akademickich, nie posiadających...
-
Agnieszka Mikołajczyk-Bareła dr inż.
Osoby -
Moduł Warsztaty - narzędzie w procesie edukacji na uczelni wyższej
PublikacjaObecnie istnieje bardzo szeroka gama narzędzi informatycznych, które wspierają proces edukacji przy wykorzystaniu internetu na uczelniach wyższych. Wśród nieodpłatnych narzędzi powszechnie znana jest platforma Moodle. W artykule zaprezentowano jeden z jej modułów – Warsztaty. Przedstawiono jego funkcjonalność. Opisano jego zalety i wady w nauczaniu łączącym techniki online i tradycyjne na uczelni wyższej (blended-learning). W artykule...
-
DEEP CONVOLUTIONAL NEURAL NETWORKS AS A DECISION SUPPORT TOOL IN MEDICAL PROBLEMS – MALIGNANT MELANOMA CASE STUDY
PublikacjaThe paper presents utilization of one of the latest tool from the group of Machine learning techniques, namely Deep Convolutional Neural Networks (CNN), in process of decision making in selected medical problems. After the survey of the most successful applications of CNN in solving medical problems, the paper focuses on the very difficult problem of automatic analyses of the skin lesions. The authors propose the CNN structure...
-
Joint Conference on New Methods in Language Processing and Computational Natural Language Learning
Konferencje -
Kształcenie ustawiczne – trendy w krajach regionu Morza Bałtyckiego
PublikacjaKwestie kształcenia ustawicznego i dostosowania kwalifikacji do potrzeb rynku pracy są przedmiotem dyskusji zarówno na szczeblu europejskim, jak i poszczególnych krajów. Działania administracji powinny zmierzać w kierunku określenia zapotrzebowania na określone umiejętności oraz aktywizacji społeczeństwa poprzez realizację idei uczenia się przez całe życie. Doświadczenia krajów skandynawskich dostarczają wielu przykładów dobrych...
-
Improving css-KNN Classification Performance by Shifts in Training Data
PublikacjaThis paper presents a new approach to improve the performance of a css-k-NN classifier for categorization of text documents. The css-k-NN classifier (i.e., a threshold-based variation of a standard k-NN classifier we proposed in [1]) is a lazy-learning instance-based classifier. It does not have parameters associated with features and/or classes of objects, that would be optimized during off-line learning. In this paper we propose...
-
Food Classification from Images Using a Neural Network Based Approach with NVIDIA Volta and Pascal GPUs
PublikacjaIn the paper we investigate the problem of food classification from images, for the Food-101 dataset extended with 31 additional food classes from Polish cuisine. We adopted transfer learning and firstly measured training times for models such as MobileNet, MobileNetV2, ResNet50, ResNet50V2, ResNet101, ResNet101V2, InceptionV3, InceptionResNetV2, Xception, NasNetMobile and DenseNet, for systems with NVIDIA Tesla V100 (Volta) and...
-
Application of autoencoder to traffic noise analysis
PublikacjaThe aim of an autoencoder neural network is to transform the input data into a lower-dimensional code and then to reconstruct the output from this code representation. Applications of autoencoders to classifying sound events in the road traffic have not been found in the literature. The presented research aims to determine whether such an unsupervised learning method may be used for deploying classification algorithms applied to...
-
Vehicle detector training with labels derived from background subtraction algorithms in video surveillance
PublikacjaVehicle detection in video from a miniature station- ary closed-circuit television (CCTV) camera is discussed in the paper. The camera provides one of components of the intelligent road sign developed in the project concerning the traffic control with the use of autonomous devices being developed. Modern Convolutional Neural Network (CNN) based detectors need big data input, usually demanding their manual labeling. In the presented...
-
Identification of the Contamination Source Location in the Drinking Water Distribution System Based on the Neural Network Classifier
PublikacjaThe contamination ingression to the Water Distribution System (WDS) may have a major impact on the drinking water consumers health. In the case of the WDS contamination the data from the water quality sensors may be efficiently used for the appropriate disaster management. In this paper the methodology based on the Learning Vector Quantization (LVQ) neural network classifier for the identification of the contamination source location...
-
Management and Economics 2022
Kursy OnlineIntroduction to Management and Economics, Learning by Doing method based upon trends in geopolitics and modern economics frameworks, strategy and Business Models Management Tools SEMESTR II Green Technologies and Monitoring
-
Bewertung der qualität von online lernmodulen = Próba oceny jakości e-Lerningowych modułów online
PublikacjaW pracy dokonano klasyfikacji rozwiązań modułów (systemów) e-Learning wg. sposobu ich tworzenia (tj. systemy autorskie, komercyjne, otwarte, zamknięte, standardowe, niestandardowe), funkcjonalności, interaktywności, obciążania sieci. Przedstawiono również wybrane kryteria (tj. merytoryczne, dydaktyczne i multimedialne) oceny jakości modułów dostępnych online pod kątem ich wykorzystywania w systemach zdalnego nauczania. Na zakończenie...
-
Artificial Neural Networks as an architectural design tool- generating new detail forms based on the Roman Corinthian order capital
PublikacjaThe following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital....
-
Hybrid Laboratory of Radio Communication With Online Simulators and Remote Access
PublikacjaContribution: Two toolsets for the remote teaching of radio communication laboratory classes: 1) online simulators for individual work of students and 2) a remote access system to laboratory workstations for group work. Initial assumptions and method of implementation of both tools are presented. Background: The COVID-19 pandemic has forced a change in teaching at all levels of education. The specificity of practical classes, such...
-
Julita Wasilczuk dr hab.
OsobyUrodzona 5 kwietnia 1965 roku w Gdańsku. W latach 1987–1991 odbyła studia na Wydziale Ekonomiki Transportu Uniwersytetu Gdańskiego (obecnie Wydział Ekonomii). Od 1993 roku zatrudniona na nowo utworzonym Wydziale Zarządzania i Ekonomii, Politechniki Gdańskiej, na stanowisku asystenta. W 1997 roku uzyskała stopień doktora nauk ekonomicznych na WZiE, a w 2006 doktora habilitowanego nauk ekonomicznych w dyscyplinie nauki o zarządzaniu,...
-
Evolving neural network as a decision support system — Controller for a game of “2048” case study
PublikacjaThe paper proposes an approach to designing the neuro-genetic self-learning decision support system. The system is based on neural networks being adaptively learned by evolutionary mechanism, forming an evolved neural network. Presented learning algorithm enables for a selection of the neural network structure by establishing or removing of connections between the neurons, and then for a finding the beast suited values of the network...
-
The Double Cognitive Bias of Mistakes: A Measurement Method
PublikacjaThere is no learning without mistakes. However, making mistakes among knowledge workers is s�ll seeing shameful. There is a clash between posi�ve a�tudes and beliefs regarding the power of gaining new (tacit) knowledge by ac�ng in new contexts and nega�ve a�tudes and beliefs toward accompanying mistakes that are sources of learning. These contradictory a�tudes create a bias that is doubled by the other shared solid belief...
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublikacjaW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
Patryk Ziółkowski dr inż.
OsobyAdiunkt na Politechnice Gdańskiej. Brał udział w projektach międzynarodowych, w tym projektach dla Ministerstwa Transportu stanu Alabama (2015), jest także laureatem grantu Fundacji Kościuszkowskiej na prowadzanie badań w USA, który zrealizował w 2018 roku. Ekspert w dziedzinie sztucznej inteligencji. Jego główny obszar zainteresowań badawczych stanowi zastosowanie sztucznej inteligencji w Inżynierii Lądowej. Prowadzi projekty...
-
Flexible Knowledge–Vision–Integration Platform for Personal Protective Equipment Detection and Classification Using Hierarchical Convolutional Neural Networks and Active Leaning
PublikacjaThis work is part of an effort to develop of a Knowledge-Vision Integration Platform for Hazard Control (KVIP-HC) in industrial workplaces, adaptable to a wide range of industrial environments. The paper focuses on hazards resulted from the non-use of personal protective equipment (PPE). The objective is to test the capability of the platform to adapt to different industrial environments by simulating the process of randomly selecting...
-
Graphical interface adaption for children to explain astronomy proportions and distances
PublikacjaMobile Science Center is a Polish project that seeks to bring astronomy knowledge to wider social groups through various applications. In its development it is necessary to design a graphical interface that explains a concept that is difficult to assimilate such as spatial proportions and distances. This paper develops a framework to create graphical representations that explain this learning to the target audience of children....
-
Podstawy uczenia głębokiego 2022
Kursy Online{mlang pl}Kurs podstaw uczenia głębokiego przeznaczony dla studentów kierunku Informatyka.{mlang} {mlang en}This is a course about deep learning basics dedicated for Computer Science students.{mlang}
-
How to Design Affect-aware Educational Systems – the AFFINT Process Approach
PublikacjaComputer systems, that support learning processes, can adapt to the needs and states of a learner. The adaptation might directly address the knowledge deficits and most tutoring systems apply an adaptable learning path of that kind. Apart from a preliminary knowledge state, there are more factors, that influence education effectiveness and among those there are fluctuating emotional states. The tutoring systems may recognize or...
-
THRIVING AND JOB SATISFACTION IN MULTICULTURAL ENVIRONMENTS OF MNCS
PublikacjaPurpose of the article The aim of the paper is to analyze the relationship between thriving and job satisfaction in multicultural environments of multinational corporations (MNCs). Methodology/methods The quantitative cross-sectional study was conducted on the sample of 128 individuals from subsidiaries of various MNCs located in Poland involved in intercultural interactions. Scientific aim The aim of this study was to examine...
-
Between therapy effect and false-positive result in animal experimentation
PublikacjaDespite the animal models’ complexity, researchers tend to reduce the number of animals in experiments for expenses and ethical concerns. This tendency makes the risk of false-positive results, as statistical significance, the primary criterion to validate findings, often fails if testing small samples. This study aims to highlight such risks using an example from experimental regenerative therapy and propose a machine-learning...
-
Concurrent Video Denoising and Deblurring for Dynamic Scenes
PublikacjaDynamic scene video deblurring is a challenging task due to the spatially variant blur inflicted by independently moving objects and camera shakes. Recent deep learning works bypass the ill-posedness of explicitly deriving the blur kernel by learning pixel-to-pixel mappings, which is commonly enhanced by larger region awareness. This is a difficult yet simplified scenario because noise is neglected when it is omnipresent in a wide...
-
Analysis of Denoising Autoencoder Properties Through Misspelling Correction Task
PublikacjaThe paper analyzes some properties of denoising autoencoders using the problem of misspellings correction as an exemplary task. We evaluate the capacity of the network in its classical feed-forward form. We also propose a modification to the output layer of the net, which we called multi-softmax. Experiments show that the model trained with this output layer outperforms traditional network both in learning time and accuracy. We...
-
Acquisition and indexing of RGB-D recordings for facial expressions and emotion recognition
PublikacjaIn this paper KinectRecorder comprehensive tool is described which provides for convenient and fast acquisition, indexing and storing of RGB-D video streams from Microsoft Kinect sensor. The application is especially useful as a supporting tool for creation of fully indexed databases of facial expressions and emotions that can be further used for learning and testing of emotion recognition algorithms for affect-aware applications....
-
Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors
PublikacjaIn the paper we provide thorough benchmarking of deep neural network (DNN) training on modern multi- and many-core Intel processors in order to assess performance differences for various deep learning as well as parallel computing parameters. We present performance of DNN training for Alexnet, Googlenet, Googlenet_v2 as well as Resnet_50 for various engines used by the deep learning framework, for various batch sizes. Furthermore,...
-
Joint workshop on Multimodal Interaction and Related Machine Learning Algorithms (now ICMI-MLMI)
Konferencje