Wyniki wyszukiwania dla: training, deep learning, image resolution, roads, urban areas, imaging, safety
-
Squares in Gdansk as a City Value = Skwery, jako wartościowe przestrzenie publiczne Gdańska
PublikacjaThe article emphasizes potential of public urban squares. The attention is focused on squares of the city of Gdansk which constitute the potential for enhancing the image of the city. Presentation of three examples of small scale intervention in the Montreal's public spaces is depicting such a potential and is underlining different roles the public space can perform in the city structure. Revitalization of urban squares is influencing...
-
imPlatelet classifier: image‐converted RNA biomarker profiles enable blood‐based cancer diagnostics
PublikacjaLiquid biopsies offer a minimally invasive sample collection, outperforming traditional biopsies employed for cancer evaluation. The widely used material is blood, which is the source of tumor-educated platelets. Here, we developed the imPlatelet classifier, which converts RNA-sequenced platelet data into images in which each pixel corresponds to the expression level of a certain gene. Biological knowledge from the Kyoto Encyclopedia...
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublikacjaThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
IFE: NN-aided Instantaneous Pitch Estimation
PublikacjaPitch estimation is still an open issue in contemporary signal processing research. Nowadays, growing momentum of machine learning techniques application in the data-driven society allows for tackling this problem from a new perspective. This work leverages such an opportunity to propose a refined Instantaneous Frequency and power based pitch Estimator method called IFE. It incorporates deep neural network based pitch estimation...
-
Abdalraheem Ijjeh Ph.D. Eng.
OsobyThe primary research areas of interest are artificial intelligence (AI), machine learning, deep learning, and computer vision, as well as modeling physical phenomena (i.e., guided waves in composite laminates). The research interests described above are utilized for SHM and NDE applications, namely damage detection and localization in composite materials.
-
Methodology of research on the impact of ramp metering on the safety and efficiency of road traffic using transport models
PublikacjaThe methods currently used to assess the impact of Intelligent Transport Systems (ITS) services on traffic safety and efficiency are mainly based on expert assessments, statistical studies or traffic models that need further development. There is no structured, uniform evaluation method to compare the impact of different ITS services and their different configurations. The impact of ITS deployment on the road network adjacent to...
-
Detection of Lexical Stress Errors in Non-Native (L2) English with Data Augmentation and Attention
PublikacjaThis paper describes two novel complementary techniques that improve the detection of lexical stress errors in non-native (L2) English speech: attention-based feature extraction and data augmentation based on Neural Text-To-Speech (TTS). In a classical approach, audio features are usually extracted from fixed regions of speech such as the syllable nucleus. We propose an attention-based deep learning model that automatically de...
-
Functional safety and managing competence
PublikacjaSą nowe wyzwania związane z badaniami, edukacją i szkoleniem w obszarach bezpieczeństwa i ochrony systemów i sieci krytycznych. W rozdziale podkreśla się, że kompetencje specjalistów powinny być kształtowane w zintegrowanych procesach edukacji i szkolenia. Dlatego uzasadnione jest, aby opracować w Europie standardy i programy kształcenia na bazie odpowiednich prac badawczych i najlepszych doświadczeń z praktyki przemysłowej w celu...
-
Using Eye-tracking to get information on the skills acquisition by the radiology residents
PublikacjaThis paper describes the possibility of monitoring the progress of knowledge and skills acquisition by the students of radiology. It is achieved by an analysis of a visual attention distribution patterns during image-based tasks solving. The concept is to use the eye-tracking data to recognize the way how the radiographic images are read by recognized experts, radiography residents involved in the training program, and untrained...
-
Evaluating the Use of Edge Devices for Detection and Tracking of Vehicles in Smart City Environment
PublikacjaThis paper introduces a Smart City solution designed to run on edge devices, leveraging NVIDIA's DeepStream SDK for efficient urban surveillance. We evaluate five object-tracking approaches, using YOLO as the baseline detector and integrating three Nvidia DeepStream trackers: IOU, NvSORT, and NvDCF. Additionally, we propose a custom tracker based on Optical Flow and Kalman filtering. The presented approach combines advanced machine...
-
Efficiency of Artificial Intelligence Methods for Hearing Loss Type Classification: an Evaluation
PublikacjaThe evaluation of hearing loss is primarily conducted by pure tone audiometry testing, which is often regarded as golden standard for assessing auditory function. If the presence of hearing loss is determined, it is possible to differentiate between three types of hearing loss: sensorineural, conductive, and mixed. This study presents a comprehensive comparison of a variety of AI classification models, performed on 4007 pure tone...
-
An Improved Convolutional Neural Network for Steganalysis in the Scenario of Reuse of the Stego-Key
PublikacjaThe topic of this paper is the use of deep learning techniques, more specifically convolutional neural networks, for steganalysis of digital images. The steganalysis scenario of the repeated use of the stego-key is considered. Firstly, a study of the influence of the depth and width of the convolution layers on the effectiveness of classification was conducted. Next, a study on the influence of depth and width of fully connected...
-
„Space, architecture and infrastructure “in-between cities”.
PublikacjaThe article presents contemporary city problems, like division of the city, infrastructural barriers, empty spaces, chaotic development, cuting-off areas, threatening the city image and functioning. These problems can be best observed in the areas in-between cities. One of the main questions for urban planners and architects seems thus to be: how to connect the city spaces instead of creating the barriers, how to create the areas...
-
Real-Time Facial Features Detection from Low Resolution Thermal Images with Deep Classification Models
PublikacjaDeep networks have already shown a spectacular success for object classification and detection for various applications from everyday use cases to advanced medical problems. The main advantage of the classification models over the detection models is less time and effort needed for dataset preparation, because classification networks do not require bounding box annotations, but labels at the image level only. Yet, after passing...
-
Explainable AI for Inspecting Adversarial Attacks on Deep Neural Networks
PublikacjaDeep Neural Networks (DNN) are state of the art algorithms for image classification. Although significant achievements and perspectives, deep neural networks and accompanying learning algorithms have some important challenges to tackle. However, it appears that it is relatively easy to attack and fool with well-designed input samples called adversarial examples. Adversarial perturba-tions are unnoticeable for humans. Such attacks...
-
Data Acquisition and Processing for GeoAI Models to Support Sustainable Agricultural Practices
PublikacjaThere are growing opportunities to leverage new technologies and data sources to address global problems related to sustainability, climate change, and biodiversity loss. The emerging discipline of GeoAI resulting from the convergence of AI and Geospatial science (Geo-AI) is enabling the possibility to harness the increasingly available open Earth Observation data collected from different constellations of satellites and sensors...
-
A CMOS Pixel With Embedded ADC, Digital CDS and Gain Correction Capability for Massively Parallel Imaging Array
PublikacjaIn the paper, a CMOS pixel has been proposed for imaging arrays with massively parallel image acquisition and simultaneous compensation of dark signal nonuniformity (DSNU) as well as photoresponse nonuniformity (PRNU). In our solution the pixel contains all necessary functional blocks: a photosensor and an analog-to-digital converter (ADC) with built-in correlated double sampling (CDS) integrated together. It is implemented in...
-
Lessons learned from developing an Industry 4.0 mobile process management system supported by Artificial Intelligence
PublikacjaResearch, development and innovation (RDI) projects are undertaken in order to improve existing, or develop new, more efficient products and services. Moreover, the goal of innovation is to produce new knowledge through research, and disseminating it through education and training. In this line of thinking, this paper reports and discusses the lessons learned from the undertaken project, regarding three areas: machine learning...
-
Investigating Feature Spaces for Isolated Word Recognition
PublikacjaMuch attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...
-
Age Prediction from Low Resolution, Dual-Energy X-ray Images Using Convolutional Neural Networks
PublikacjaAge prediction from X-rays is an interesting research topic important for clinical applications such as biological maturity assessment. It is also useful in many other practical applications, including sports or forensic investigations for age verification purposes. Research on these issues is usually carried out using high-resolution X-ray scans of parts of the body, such as images of the hands or images of the chest. In this...
-
Playback detection using machine learning with spectrogram features approach
PublikacjaThis paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...
-
Remote measurement of building usable floor area - Algorithms fusion
PublikacjaRapid changes that are taking place in the urban environment have significant impact on urban growth. Most cities and urban regions all over the world compete to increase resident and visitor satisfaction. The growing requirements and rapidity of introducing new technologies to all aspects of residents' lives force cities and urban regions to implement "smart cities" concepts in their activities. Real estate is one of the principal...
-
Medical Image Dataset Annotation Service (MIDAS)
PublikacjaMIDAS (Medical Image Dataset Annotation Service) is a custom-tailored tool for creating and managing datasets either for deep learning, as well as machine learning or any form of statistical research. The aim of the project is to provide one-fit-all platform for creating medical image datasets that could easily blend in hospital's workflow. In our work, we focus on the importance of medical data anonimization, discussing the...
-
Alina Guzik mgr
Osoby -
The effect of road restraint systems on the level of road safety - Polish experience
PublikacjaRoadside accidents happen when a vehicle runs off the road. The majority of these accidents are very severe because leaving the road is usually followed by hitting a solid obstacle (tree, pole, support, culvert front wall, barrier). Roadsides are some of the most important issues of road safety. They have been studied for years to identify roadside hazards and the effectiveness of road safety measures such as restraint systems....
-
Zastosowanie metody studium przypadku w kształceniu menedżerów
PublikacjaKształcenie z wykorzystaniem metod rozwiązywania problemów (problem-based learning) staje się coraz bardziej popularne na wszystkich poziomach kształcenia, również w edukacji biznesowej. Przykładem takiej metody jest studium przypadku (case study). Metoda studium przypadku pozwala na rozwijanie umiejętności i kompetencji wykorzystywanych przez menedżerów w ich pracy, np. umiejętności syntezy, identyfikacji problemów, czy podejmowania...
-
Autonomous Vehicle Navigation in Dense Urban Area in Global Positioning Context
PublikacjaAutonoumous vehicle services are likely to be adopted in dense urban area. Some research prove that autonomous transport might be capable of improving the transport needs of few times and as a consequence sustainability, congestion and safety may be improved. The world, hopefully is close to a transport revolution age. These studies are perhaps exaggerated, over-optimistic and far fro fully operational. The paper takes into account...
-
Investigating Noise Interference on Speech Towards Applying the Lombard Effect Automatically
PublikacjaThe aim of this study is two-fold. First, we perform a series of experiments to examine the interference of different noises on speech processing. For that purpose, we concentrate on the Lombard effect, an involuntary tendency to raise speech level in the presence of background noise. Then, we apply this knowledge to detecting speech with the Lombard effect. This is for preparing a dataset for training a machine learning-based...
-
Spiral Search Grasshopper Features Selection with VGG19-ResNet50 for Remote Sensing Object Detection
PublikacjaRemote sensing object detection plays a major role in satellite imaging and is required in various scenarios such as transportation, forestry, and the ocean. Deep learning techniques provide efficient performance in remote sensing object detection. The existing techniques have the limitations of data imbalance, overfitting, and lower efficiency in detecting small objects. This research proposes the spiral search grasshopper (SSG)...
-
Mobilenet-V2 Enhanced Parkinson's Disease Prediction with Hybrid Data Integration
PublikacjaThis study investigates the role of deep learning models, particularly MobileNet-v2, in Parkinson's Disease (PD) detection through handwriting spiral analysis. Handwriting difficulties often signal early signs of PD, necessitating early detection tools due to potential impacts on patients' work capacities. The study utilizes a three-fold approach, including data augmentation, algorithm development for simulated PD image datasets,...
-
Effects of Road Infrastructure on Pedestrian Safety
PublikacjaThe objective of the work was to identify risks for pedestrians that involve road infrastructure and roadside and to define how selected elements of geometry and traffic layout affect driver behaviour (speed on approaching pedestrian crossings). The results have helped to formulate recommendations on pedestrian crossing design. The research included an analysis of 2013-2017 statistics to identify the...
-
Computer-assisted pronunciation training—Speech synthesis is almost all you need
PublikacjaThe research community has long studied computer-assisted pronunciation training (CAPT) methods in non-native speech. Researchers focused on studying various model architectures, such as Bayesian networks and deep learning methods, as well as on the analysis of different representations of the speech signal. Despite significant progress in recent years, existing CAPT methods are not able to detect pronunciation errors with high...
-
From Knowledge based Vision Systems to Cognitive Vision Systems: A Review
PublikacjaComputer vision research and applications have their origins in 1960s. Limitations in computational resources inherent of that time, among other reasons, caused research to move away from artificial intelligence and generic recognition goals to accomplish simple tasks for constrained scenarios. In the past decades, the development in machine learning techniques has contributed to noteworthy progress in vision systems. However,...
-
MODELOWANIE WYBRANYCH MIAR BEZPIECZEŃSTWA RUCHU NA DŁUGICH ODCINKACH DRÓG
PublikacjaKażdego roku w wypadkach drogowych na świecie życie traci prawie 1,3 mln osób, co oznacza prawie niemal 3 tys. ofiar dziennie,. Tyle samo zabitych w ruchu drogowym odnotowujemy rocznie w Polsce. Ekonomiczne straty w wyniku tych wypadków wynoszą ok. 2% światowego PKB. W roku 2010 Organizacja Narodów Zjednoczonych (ONZ) przyjęła rezolucję pt. „Dekada działań na rzecz bezpieczeństwa ruchu drogowego na lata 2011 – 2020” rozpoczynającą...
-
Autonomous port management based AGV path planning and optimization via an ensemble reinforcement learning framework
PublikacjaThe rapid development of shipping trade pushes automated container terminals toward the direction of intelligence, safety and efficiency. In particular, the formulation of AGV scheduling tasks and the safety and stability of transportation path is an important part of port operation and management, and it is one of the basic tasks to build an intelligent port. Existing research mainly focuses on collaborative operation between...
-
Reduction of Tire Rolling Resistance by Optimization of Road Surfaces and Tires
PublikacjaDuring interaction between tire and road surface three very important phenomena are always in effect. One of them (very desirable) is friction that is important for traction, braking and cornering. Two other phenomena are not desirable at all, that is rolling resistance and noise. This paper discusses relations between road surface and tire parameters versus tire rolling resistance. Road surface texture, porosity, impedance, strength...
-
Method for Clustering of Brain Activity Data Derived from EEG Signals
PublikacjaA method for assessing separability of EEG signals associated with three classes of brain activity is proposed. The EEG signals are acquired from 23 subjects, gathered from a headset consisting of 14 electrodes. Data are processed by applying Discrete Wavelet Transform (DWT) for the signal analysis and an autoencoder neural network for the brain activity separation. Processing involves 74 wavelets from 3 DWT families: Coiflets,...
-
Neural network model of ship magnetic signature for different measurement depths
PublikacjaThis paper presents the development of a model of a corvette-type ship’s magnetic signature using an artificial neural network (ANN). The capabilities of ANNs to learn complex relationships between the vessel’s characteristics and the magnetic field at different depths are proposed as an alternative to a multi-dipole model. A training dataset, consisting of signatures prepared in finite element method (FEM) environment Simulia...
-
Melanoma skin cancer detection using mask-RCNN with modified GRU model
PublikacjaIntroduction: Melanoma Skin Cancer (MSC) is a type of cancer in the human body; therefore, early disease diagnosis is essential for reducing the mortality rate. However, dermoscopic image analysis poses challenges due to factors such as color illumination, light reflections, and the varying sizes and shapes of lesions. To overcome these challenges, an automated framework is proposed in this manuscript. Methods: Initially, dermoscopic...
-
The impact of the AC922 Architecture on Performance of Deep Neural Network Training
PublikacjaPractical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...
-
Data fusion of sparse, heterogeneous, and mobile sensor devices using adaptive distance attention
PublikacjaIn environmental science, where information from sensor devices are sparse, data fusion for mapping purposes is often based on geostatistical approaches. We propose a methodology called adaptive distance attention that enables us to fuse sparse, heterogeneous, and mobile sensor devices and predict values at locations with no previous measurement. The approach allows for automatically weighting the measurements according to a priori...
-
Musical Instrument Tagging Using Data Augmentation and Effective Noisy Data Processing
PublikacjaDeveloping signal processing methods to extract information automatically has potential in several applications, for example searching for multimedia based on its audio content, making context-aware mobile applications (e.g., tuning apps), or pre-processing for an automatic mixing system. However, the last-mentioned application needs a significant amount of research to reliably recognize real musical instruments in recordings....
-
Enhancing environmental literacy through urban technology-based learning. The PULA app case
PublikacjaThis study addresses the need to enhance environmental literacy, focusing on urban adults through mobile applications, based on the example of PULA app that engages early adopters in gamified pro- environmental activities, offering insights into informal learning. Grounded in 'urban pedagogy,' the study combines semi-structured interviews with 17 application testers and quantitative data analysis, unveiling motivations, user feedback,...
-
The green waterfront of a city. Where are the limits of good planning? Gdansk case
PublikacjaThe aim of the article is to present the role of green public areas of waterfronts in shaping the image of cities, and the threats to such landscape which may be caused by wrong planning decisions. The case study of Gdansk sea-shore area in Poland is presented as an example to illustrate the values and potential of the waterfront landscape which can be easily destroyed by inadequate spatial development. Some theoretical studies...
-
Semantic segmentation training using imperfect annotations and loss masking
PublikacjaOne of the most significant factors affecting supervised neural network training is the precision of the annotations. Also, in a case of expert group, the problem of inconsistent data annotations is an integral part of real-world supervised learning processes, well-known to researchers. One practical example is a weak ground truth delineation for medical image segmentation. In this paper, we have developed a new method of accurate...
-
Visual Content Learning in a Cognitive Vision Platform for Hazard Control (CVP-HC)
PublikacjaThis work is part of an effort for the development of a Cognitive Vision Platform for Hazard Control (CVP-HC) for applications in industrial workplaces, adaptable to a wide range of environments. The paper focuses on hazards resulted from the nonuse of personal protective equipment (PPE). Given the results of previous analysis of supervised techniques for the problem of classification of a few PPE (boots, hard hats, and gloves...
-
Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks
PublikacjaThe increasing use of the Internet with vehicles has made travel more convenient. However, hackers can attack intelligent vehicles through various technical loopholes, resulting in a range of security issues. Due to these security issues, the safety protection technology of the in-vehicle system has become a focus of research. Using the advanced autoencoder network and recurrent neural network in deep learning, we investigated...
-
Face with Mask Detection in Thermal Images Using Deep Neural Networks
PublikacjaAs the interest in facial detection grows, especially during a pandemic, solutions are sought that will be effective and bring more benefits. This is the case with the use of thermal imaging, which is resistant to environmental factors and makes it possible, for example, to determine the temperature based on the detected face, which brings new perspectives and opportunities to use such an approach for health control purposes. The...
-
Music information retrieval—The impact of technology, crowdsourcing, big data, and the cloud in art.
PublikacjaThe exponential growth of computer processing power, cloud data storage, and crowdsourcing model of gathering data bring new possibilities to music information retrieval (mir) field. Mir is no longer music content retrieval only; the area also comprises the discovery of expressing feelings and emotions contained in music, incorporating other than hearing modalities for helping this issue, users’ profiling, merging music with social...
-
Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio
PublikacjaThe purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...