Filtry
wszystkich: 1860
-
Katalog
- Publikacje 1422 wyników po odfiltrowaniu
- Czasopisma 184 wyników po odfiltrowaniu
- Konferencje 26 wyników po odfiltrowaniu
- Osoby 63 wyników po odfiltrowaniu
- Projekty 10 wyników po odfiltrowaniu
- Kursy Online 70 wyników po odfiltrowaniu
- Wydarzenia 10 wyników po odfiltrowaniu
- Dane Badawcze 75 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: deep reinforcement learning
-
Continuous learning as a method of raising qualifications – the perspective of workers, employers and training organizations
PublikacjaContinuous learning is discussed in strategic documents of Poland and the European Union. In Poland, the idea of continuous learning is not very popular. However, in the context of strong competition in the labour market and the progressive globalization processes, the skills issue takes on new meaning — both for employees and employers. In order to adapt skills to labour market needs it is necessary to conduct adequate studies...
-
Divide and not forget: Ensemble of selectively trained experts in Continual Learning
PublikacjaClass-incremental learning is becoming more popular as it helps models widen their applicability while not forgetting what they already know. A trend in this area is to use a mixture-of-expert technique, where different models work together to solve the task. However, the experts are usually trained all at once using whole task data, which makes them all prone to forgetting and increasing computational burden. To address this limitation,...
-
Deep neural networks approach to skin lesions classification — A comparative analysis
PublikacjaThe paper presents the results of research on the use of Deep Neural Networks (DNN) for automatic classification of the skin lesions. The authors have focused on the most effective kind of DNNs for image processing, namely Convolutional Neural Networks (CNN). In particular, three kinds of CNN were analyzed: VGG19, Residual Networks (ResNet) and the hybrid of VGG19 CNN with the Support Vector Machine (SVM). The research was carried...
-
Karol Flisikowski dr inż.
OsobyKarol Flisikowski jest profesorem uczelni w Katedrze Statystyki i Ekonometrii, Wydziału Zarządzania i Ekonomii Politechniki Gdańskiej. Jest odpowiedzialny jest za prowadzenie zajęć ze statystyki opisowej i matematycznej (w języku polskim i angielskim), a także badań naukowych w zakresie statystyki społecznej. Był uczestnikiem wielu konferencji o zasięgu krajowym, jak i międzynarodowym, gdzie prezentował wyniki prowadzonych przez...
-
Multimedia industrial and medical applications supported by machine learning
PublikacjaThis article outlines a keynote paper presented at the Intelligent DecisionTechnologies conference providing a part of the KES Multi-theme Conference “Smart Digital Futures” organized in Rome on June 14–16, 2023. It briefly discusses projects related to traffic control using developed intelligent traffic signs and diagnosing the health of wind turbine mechanisms and multimodal biometric authentication for banking branches to provide...
-
Deep slot effect in the squirrel-cage induction motors with scalar (V/F) control
PublikacjaQualitative characteristics of the electrical drive considerably depend on identification accuracy of math model parameters. In particular, it is depend on detection accuracy of stator active resistance r1 that is used in calculation of flux linkages, rotary speed in sensorless control systems. Paper provides analysis of influence of stator deep slot effect to stator active resistance value
-
Machine learning applied to acoustic-based road traffic monitoring
PublikacjaThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Machine learning applied to acoustic-based road traffic monitoring
PublikacjaThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Extractive detoxification of hydrolysates with simultaneous formation of deep eutectic solvents
PublikacjaThe hydrolysis of lignocellulosic biomass results in the production of so-called fermentation inhibitors, which reduce the efficiency of biohydrogen production. To increase the efficiency of hydrogen production, inhibitors should be removed from aqueous hydrolysate solutions before the fermentation process. This paper presents a new approach to the detoxification of hydrolysates with the simultaneous formation of in-situ deep eutectic...
-
Discovering Rule-Based Learning Systems for the Purpose of Music Analysis
PublikacjaMusic analysis and processing aims at understanding information retrieved from music (Music Information Retrieval). For the purpose of music data mining, machine learning (ML) methods or statistical approach are employed. Their primary task is recognition of musical instrument sounds, music genre or emotion contained in music, identification of audio, assessment of audio content, etc. In terms of computational approach, music databases...
-
Purification of model biogas from toluene using deep eutectic solvents
PublikacjaBiogas from landfills and wastewater treatment facilities typically contain a wide range of volatile organic compounds (VOCs), that can cause severe operational problems when biogas is used as fuel. Among the contaminants commonly occur aromatic compounds, i.e. benzene, ethylbenzene, toluene and xylenes (BTEX). In order to remove BTEX from biogas, different processes can be used. A promising process for VOCs removal is their absorption...
-
Charge-based deep level transient spectroscopy of B-doped and undoped polycrystalline diamond films
PublikacjaThe undoped and B-doped polycrystalline diamond thin film was synthesized by hot filament chemical vapor deposition and microwave plasma, respectively. The structural characterization was performed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The electrical properties of synthesized diamond layer were characterized by dc-conductivity method and charge deep level transient spectroscopy. The B-doped...
-
Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
PublikacjaOne of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was...
-
A Machine Learning Approach for Estimating Overtime Allocation in Software Development Projects
PublikacjaOvertime planning in software projects has traditionally been approached with search-based multi-objective optimization algorithms. However, the explicit solutions produced by these algorithms often lack applicability and acceptance in the software industry due to their disregard for project managers' intuitive knowledge. This study presents a machine learning model that learns the preferred overtime allocation patterns from solutions...
-
Ireneusz Czarnowski Prof.
OsobyIRENEUSZ CZARNOWSKI is a graduate of the Faculty of Electrical Engineering at Gdynia Maritime University. He gained a doctoral degree in the field of computer science at Poznan University of Technology and a postdoctoral degree in the field of computer science at Wroclaw University of Science and Technology. Since 1998 is associated with Gdynia Maritime University, currently is a professor of computer science in the Department...
-
Computational Simulation of the Effects of Different Culture Types and Leader Qualities on Mistake Handling and Organisational Learning
PublikacjaThis chapter investigates computationally the following research hypotheses: (1) Higher flexibility and discretion in organisational culture results in better mistake management and thus better organisational learning, (2) Effective organisational learning requires a transformational leader to have both high social and formal status and consistency, and (3) Company culture and leader’s behavior must align for the best learning...
-
An integrated e-learning services management system providing HD videoconferencing and CAA services
PublikacjaIn this paper we present a novel e-learning services management system, designed to provide highly modifiable platform for various e-learning tools, able to fulfill its function in any network connectivity conditions (including no connectivity scenario). The system can scale from very simple setup (adequate for servicing a single exercise) to a large, distributed solution fit to support an enterprise. Strictly modular architecture...
-
WEB-CAM AS A MEANS OF INFORMATION ABOUT EMOTIONAL ATTEMPT OF STUDENTS IN THE PROCESS OF DISTANT LEARNING
PublikacjaNew methods in education become more popular nowadays. Distant learning is a good example when teacher and student meet in virtual environment. Because interaction in this virtual world might be complicated it seems necessary to assure as much methods of conforming that student is still engaged in the process of learning as it is possible. We would like to present assumption that by means of web-cam we will be able to track facial...
-
Wisdom from Experience Paradox: Organizational Learning, Mistakes, Hierarchy and Maturity Issues
PublikacjaOrganizations often perceive mistakes as negligence and low-performance indicators, yet they can be a precious learning resource. However, organizations cannot learn from mistakes if they have not accepted them. This study aimed to explore how organizational hierarchy and maturity levels influence the relationship between mistakes acceptance and the ability to change. A sample composed of 380 Polish employees working in knowledge-driven...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublikacjaIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
OPTICAL STRAIN MEASUREMENT OF CONCRETE VERSUS MANUAL EXTENSOMETER MEASUREMENT BASED ON THE TEST RC DEEP BEAM IN A COMPLEX STATE OF STRESS
PublikacjaThe purpose of this study is to compare the strain measurement techniques of concrete in R-C element subjected to the monotonic load up to the failure. In the analysis manual extensometer methods of measurements and the optical system ARAMIS for non-contact three-dimensional measurements of deformation was used. The test sample was a cantilever deep beam loaded throughout the depth which was a part of the reinforced concrete deep...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublikacjaCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
Deep eutectic solvents in analytical sample preconcentration Part B: Solid-phase (micro)extraction
PublikacjaOne of the key challenges of modern analytical chemistry is the monitoring of trace amounts of contaminants using sensitive and selective instrumental techniques. Due to the variety and complexity of some samples, it is often necessary to properly prepare a sample and to perform a preconcentration of trace amounts of analytes. In line with the principles of Green Analytical Chemistry (GAC), it is important for an analytical procedure...
-
Comparative Study of the Reinforcement Type Effect on the Thermomechanical Properties and Burning of Epoxy-Based Composites
PublikacjaAramid (AF), glass (GF), carbon (CF), basalt (BF), and flax (FF) fibers in the form of fabrics were used to produce the composites by hand-lay up method. The use of fabrics of similar grammage for composites’ manufacturing allowed for a comprehensive comparison of the properties of the final products. The most important task was to prepare a complex setup of mechanical and thermomechanical properties, supplemented by fire behavior...
-
Functional 3D-Printed Polymeric Materials with Metallic Reinforcement for Use in Cut-Resistant Gloves
Publikacja -
THE ONLINE APPLICATION AND E-LEARNING IN THE COMPETENCE-BASED MANAGEMENT IN PUBLIC ADMINISTRATION ORGANIZATIONS
PublikacjaThe integration of effective management of work-related processes and utilization of human resources potential leads to the development of organization. The purpose of this paper was to examine how the principles of competences-based management can be introduced to enhance organization’s effectiveness in human resources management. A model of assessment and development of competences-based management, embracing an online application...
-
Concrete mix design using machine learning
PublikacjaDesigning a concrete mix is a process of synthesizing many components, it is not a simple process and requires extensive technical knowledge. The design process itself focuses on obtaining the required strength of concrete. Very often designing a concrete mix takes into account the need to maintain the proper water-demand and frost-resistance features. The parameters that influence the concrete class most significantly are the...
-
Study of various machine learning approaches for Sentinel-2 derived bathymetry
PublikacjaIn recent years precise and up-to-date information regarding seabed depth has become more and more important for companies and institutions that operate on coastlines. While direct, in-situ measurements are performed regularly, they are expensive, time-consuming and impractical to be performed in short time intervals. At the same time, an ever-increasing amount of satellite imaging data becomes available. With these images, it...
-
Analyzing the relationship between sound, color, and emotion based on subjective and machine-learning approaches
PublikacjaThe aim of the research is to analyze the relationship between sound, color, and emotion. For this purpose, a survey application was prepared, enabling the assignment of a color to a given speaker’s/singer’s voice recordings. Subjective tests were then conducted, enabling the respondents to assign colors to voice/singing samples. In addition, a database of voice/singing recordings of people speaking in a natural way and with expressed...
-
Assessment and design of greener deep eutectic solvents – A multicriteria decision analysis
PublikacjaDeep eutectic solvents (DES) are often considered as green solvents because of their properties, such as negligible vapor pressure, biodegradability, low toxicity or natural origin of their components. Due to the fact that DES are cheaper than ionic liquids, they have gained many applications in a short period of time. However, claims about their greenness sometimes seem to be exaggerated. Especially, bearing in mind lots of data...
-
Methods of deep modification of low-bearing soil for the foundation of new and spare air runways
PublikacjaAfter analyzing the impact of aircraft on the airport pavement (parking spaces, runways, startways), it was considered advisable to consider the problem of deep improvement or strengthening of its subsoil. This is especially true for low-bearing soil. The paper presents a quick and effective method of strengthening the subsoil intended for the construction of engineering structures used for civil...
-
Hydrophobic deep eutectic solvents as “green” extraction media for polycyclic aromatic hydrocarbons in aqueous samples
PublikacjaThe paper presents novel nonionic and hydrophobic deep eutectic solvents which were synthesized from natural compounds, i.e., thymol, ±camphor, decanoic and 10-undecylenic acids. Fundamental physicochemical properties of the synthesized deep eutectic solvents were determined, followed by their application as extractants in ultrasound-assisted dispersive liquid-liquid microextraction to isolate and enrich polycyclic aromatic hydrocarbons...
-
Efficient Extraction of Fermentation Inhibitors by Means of Green Hydrophobic Deep Eutectic Solvents
PublikacjaThe methods for hydrogen yield efficiency improvements, the gaseous stream purification in gaseous biofuels generation, and the biomass pretreatment are considered as the main trends in research devoted to gaseous biofuel production. The environmental aspect related to the liquid stream purification arises. Moreover, the management of post-fermentation broth with the application of various biorefining techniques gains importance....
-
Supporting First Year Students Through Blended-Learning - Planning Effective Courses and Learner Support
PublikacjaHigher education has been actively encouraged to find more effective and flaxible delivery models to provide all students with access to good quality learning experiences. This paper describes students opinion about using e-learning techniques and their participation in courses provided in different ways as additional help and expectations of first year students.
-
Vident-real: an intra-oral video dataset for multi-task learning
Dane BadawczeWe introduce Vident-real, a large dataset of 100 video sequences of intra-oral scenes from real conservative dental treatments performed at the Medical University of Gdańsk, Poland. The dataset can be used for multi-task learning methods including:
-
Adaptive Dynamical Systems Modelling of Transformational Organizational Change: with Focus on Organizational Culture and Organizational Learning
PublikacjaTransformative Organizational Change becomes more and more significant both practically and academically, especially in the context of organizational culture and learning. However computational modeling and a formalization of organizational change and learning processes are still largely unexplored. This paper aims to provide an adaptive network model of transformative organizational change and translate a selection of organizational...
-
Adaptive Dynamical Systems Modelling of Transformational Organizational Change with Focus on Organizational Culture and Organizational Learning
PublikacjaTransformative Organizational Change becomes more and more significant both practically and academically, especially in the context of organizational culture and learning. However computational modeling and a formalization of organizational change and learning processes are still largely unexplored. This paper aims to provide an adaptive network model of transformative organizational change and translate a selection of organizational...
-
Experimental and predicted physicochemical properties of monopropanolamine-based deep eutectic solvents
PublikacjaIn this work, the novel deep eutectic solvents (DESs) based on 3-amino-1-propanol (AP) as hydrogen bond donor (HBD) and tetrabutylammonium bromide (TBAB) or tetrabutylammonium chloride (TBAC) or tetraethylammonium chloride (TEAC) as hydrogen bond acceptors (HBAs) were synthesized with different molar ratios of 1: 4, 1: 6 and 1: 8 salt to AP. Fourier Transform Infrared Spectroscopy measurements were performed to provide an evidence...
-
Experimental and predicted physicochemical properties of monopropanolamine-based deep eutectic solvents
PublikacjaIn this work, the novel deep eutectic solvents (DESs) based on 3-amino-1-propanol (AP) as hydrogen bond donor (HBD) and tetrabutylammonium bromide (TBAB) or tetrabutylammonium chloride (TBAC) or tetraethylammonium chloride (TEAC) as hydrogen bond acceptors (HBAs) were synthesized with different molar ratios of 1:4, 1:6 and 1:8 salt to AP. Fourier Transform Infrared Spectroscopy measurements were performed to provide an evidence...
-
Open source solution LMS for supporting e-learning/blended learning engineers
PublikacjaW artykule zaprezentowano darmowe systemy zarządzania kształceniem na odległość wspomagające e-learningowe/mieszane nauczanie inżynierów. Pierwszy system TeleCAD został opracowany w ramach projektu Leonardo da Vinci (1998-2001). System TeleCAD był propozycją w projekcie V Ramowy CURE (2003-2006). W roku 2003 dzięki projektowi Leonardo da Vinci EMDEL (2001-2005) Centrum Edukacji Niestacjonarnej Politechniki Gdańskiej wybrało system...
-
Closer look into the structures of tetrabutylammonium bromide–glycerol-based deep eutectic solvents and their mixtures with water
PublikacjaIn recent years, deep eutectic solvents (DES) and it’s mixture with water have become more and more attention as green solvents used in chemistry. However, there are only a few theoretical studies on the mechanisms of pure DES and DES-water complex formation. Therefore, the structural properties of tetrabutylammonium bromide–glycerol-based deep eutectic solvents and their mixtures with water have been investigated by means of Molecular...
-
Playback detection using machine learning with spectrogram features approach
PublikacjaThis paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...
-
Distance learning trends: introducing new solutions to data analysis courses
PublikacjaNowadays data analysis of any kind becomes a piece of art. The same happens with the teaching processes of statistics, econometrics and other related courses. This is not only because we are facing (and are forced to) teach online or in a hybrid mode. Students expect to see not only the theoretical part of the study and solve some practical examples together with the instructor. They are waiting to see a variety of tools, tutorials,...
-
Solubility advantage of sulfanilamide and sulfacetamide in natural deep eutectic systems: experimental and theoretical investigations
PublikacjaObjective: The aim of this study was to explore the possibility of using natural deep eutectic solvents (NADES) as solvation media for enhancement of solubility of sulfonamides, as well as gaining some thermodynamic characteristics of the analyzed systems. Significance: Low solubility of many active pharmaceutical ingredients is a well-recognized difficulty in pharmaceutical industry, hence the need for different strategies addressing...
-
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublikacjaA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
User -friendly E-learning Platform: a Case Study of a Design Thinking Approach Use
PublikacjaE-learning systems are very popular means to support the teaching process today. These systems are mainly used by universities as well as by commercial training centres. We analysed several popular e-learning platforms used in Polish universities and find them very unfriendly for the users. For this reason, the authors began the work on the creation of a new system that would be not only useful, but also usable for students, teachers...
-
Deep convolutional neural network for predicting kidney tumour malignancy
PublikacjaPurpose: According to the statistics, up to 15-20% of removed solid kidney tumors turn out to be benign in postoperative histopathological examination, despite having been identified as malignant by a radiologist. The aim of the research was to limit the number of unnecessary nephrectomies of benign tumors. Methods or Background: We propose a machine-aided diagnostic system for kidney...
-
Application of deep eutectic solvents for separation and determination of bioactive compounds in medicinal plants
PublikacjaThe medicinal plants industry, particularly in regard to products rich in biologically active substances for maintaining health, has grown by leaps and bounds in the last decade, with sales of over-the-counter drugs containing these substances growing by billions of dollars. Attention has thus also been paid to the safety and effectiveness of these medicines. We are currently witnessing a rapid increase in the number of publications...
-
Deodorization of model biogas by means of novel non-ionic deep eutectic solvent
PublikacjaThe paper presents new non-ionic deep eutectic solvent (DES) composed of natural and non-toxic components i.e. guaiacol, camphor and levulinic acid in 1:1:3 molar ratio as a promising absorbent for removal of selected volatile organic compounds (VOCs) including dichloromethane, toluene, hexamethyldisiloxane and propionaldehyde from model biogas. The affi nity of DES for VOCs was determined as vapour-liquid coeffi cients and the...
-
Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review
PublikacjaGreen Chemistry plays a more and more important role in implementing rules of sustainable development to prevent environmental pollution caused by technological processes, while simultaneously increasing the production yield. Ionic liquids (ILs) and deep eutectic solvents (DESs) constitute a very broad group of substances. Apart from many imperfections, ILs and DESs have been the most promising discoveries in the world of Green...