Wyniki wyszukiwania dla: existence of solutions
-
Existence of solutions of differential equations with boundary conditions
PublikacjaPraca dotyczy równań różniczkowych z liniowym warunkiem brzegowym zależnym od parametru. Podane zostały warunki dostateczne na istnienie rozwiązania powyższego zagadnienia. Przy dowodzie i konstrukcji iteracji monotonicznych zastosowano metodę górnych i dolnych rozwiązań. O prawej stronie zagadnienia zakładano jednostronny warunek Lipschitza.
-
Existence of solutions of differential equations with nonlinearmultipoint boundary conditions.
PublikacjaSformułowano warunki dostateczne na istnienie rozwiązań (jedynego lubekstremalnych) dla równań różniczkowych z warunkami jak wyżej przyzastosowaniu metody iteracji monotonicznych. O prawej stronie zagadnienia i nieliniowym warunku brzegowym zakładano między innymi, że spełniają jednostronny warunek Lipschitza.
-
Existence of solutions for a coupled system of difference equations with cousal operators
PublikacjaPraca dotyczy układów równań różnicowych. Podano warunki dostateczne na istnienie rozwiązań takich problemów. Badano również nierówności różnicowe.
-
Existence of solutions with an exponential growth for nonlinear differential-functional parabolic equations
PublikacjaWe consider the Cauchy problem for nonlinear parabolic equations with functional dependence.We prove Schauder-type existence results for unbounded solutions. We also prove existence of maximal solutions for a wide class of differential functional equations.
-
Existence of solutions for second order impulsive differential equations with deviating arguments
PublikacjaPraca dotyczy równań różniczkowych z impulsami i odchylonymi argumentami. Badano problem istnienia rozwiązań stosując metodę iteracji monotonicznych opartą na dolnych i górnych rozwiązaniach. Praca uogólnia szereg znanych wyników.
-
Existence of solutions of boundary value problems for differential equations with delayed arguments.
PublikacjaPodane zostały warunki dostateczne na istnienie i jednoznaczność rozwiązań problemów brzegowych dla równań różniczkowych z odchylonymi argumentami.Problem istnienia ekstremalnych rozwiązań również był przedmiotem badań. Podano konstrukcję monotonicznych iteracji i pokazano, że iteracje te są zbieżne do szukanego rozwiązania. Praca zawiera przykłady które ilustrują ogólną teorię.
-
Existence of solutions of boundary value problems for differential equations in which deviated arguments depend on the unknown solution
PublikacjaPrzy pewnych warunkach, gdy m.in. funkcja f występująca po prawej stronie zagadnienia jest monotoniczna, pokazano że istnieje jedyne rozwiązanie problemu brzegowego dla równań różniczkowych z odchylonymi argumentami gdy ten argument odchylony zależy od nieznanego rozwiązania. Rozważano też zagadnienia gdy występuje więcej takich argumentów odchylonych. Otrzymane wyniki poparto przykładem.
-
Existence and approximate solutions of Neumann problems
PublikacjaDyskutowany jest problem Neumanna dla równań różniczkowych drugiego rzędu.Praca dotyczy istnienia rozwiązań i zbieżnosci iteracji monotonicznych któresą przybliżonymi rozwiązaniami omawianych zagadnień. Określone zostały wa-runki zbieżności takich ciągów oraz określono rodzaj tej zbieżnosci.
-
On the existence of homoclinic type solutions of inhomogenous Lagrangian systems
PublikacjaWe study the existence of homoclinic type solutions for a class of inhomogenous Lagrangian systems with a potential satisfying the Ambrosetti-Rabinowitz superquadratic growth condition and a square integrable forcing term. A homoclinic type solution is obtained as a limit of periodic solutions of an approximative sequence of second order differential equations.
-
Existence of unbounded solutions to parabolic equations with functional dependence
PublikacjaThe Cauchy problem for nonlinear parabolic differential-functional equations is considered. Under natural generalized Lipschitz-type conditions with weights, the existence and uniqueness of unbounded solutions is obtained in three main cases: (i) the functional dependence u(·); (ii) the functional dependence u(·) and ∂xu(·); (iii) the functional dependence u(·)and the pointwise dependence ∂xu(t,x).
-
Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions
Publikacjawe address the well-posedness of the planar linearized equilibrium problem for homogenized pantographic lattices. To do so: (i) we introduce a class of subsets of anisotropic Sobolev’s space as the most suitable energy space E relative to assigned boundary conditions; (ii) we prove that the considered strain energy density is coercive and positive definite in E ; (iii) we prove that the set of placements for which the strain...
-
On existence and uniqueness of weak solutions for linear pantographic beam lattices models
PublikacjaIn this paper, we discuss well-posedness of the boundary-value problems arising in some “gradientincomplete” strain-gradient elasticity models, which appear in the study of homogenized models for a large class ofmetamaterials whosemicrostructures can be regarded as beam lattices constrained with internal pivots. We use the attribute “gradient-incomplete” strain-gradient elasticity for a model in which the considered strain energy...
-
Existence of Two Periodic Solutions to General Anisotropic Euler-Lagrange Equations
PublikacjaAbstract. This paper is concerned with the following Euler-Lagrange system d/dtLv(t,u(t), ̇u(t)) =Lx(t,u(t), ̇u(t)) for a.e.t∈[−T,T], u(−T) =u(T), Lv(−T,u(−T), ̇u(−T)) =Lv(T,u(T), ̇u(T)), where Lagrangian is given by L=F(t,x,v) +V(t,x) +〈f(t),x〉, growth conditions aredetermined by an anisotropic G-function and some geometric conditions at infinity.We consider two cases: with and without forcing termf. Using a general version...
-
On the Existence of Homoclinic Type Solutions of a Class of Inhomogenous Second Order Hamiltonian Systems
PublikacjaWe show the existence of homoclinic type solutions of a class of inhomogenous second order Hamiltonian systems, where a C1-smooth potential satisfies a relaxed superquadratic growth condition, its gradient is bounded in the time variable, and a forcing term is sufficiently small in the space of square integrable functions. The idea of our proof is to approximate the original system by time-periodic ones, with larger and larger...
-
Existence and uniqueness of solutions for single-population McKendrick-von Foerster models with renewal
PublikacjaWe study a McKendrick-von Foerster type equation with renewal. This model is represented by a single equation which describes one species which produces young individuals. The renewal condition is linear but takes into account some history of the population. This model addresses nonlocal interactions between individuals structured by age. The vast majority of size-structured models are also treatable. Our model generalizes a number...
-
Existence of positive solutions to third order differential equations with advanced arguments and nonlocal boundary conditions
PublikacjaPraca dotyczy warunków dostatecznych na istnienie dodatnich rozwiązań dla równań różniczkowych z wyprzedzonymi argumentami i warunkami brzegowymi zawierającymi całki Stieltjesa.
-
Existence of positive solutions to second order four-point impulsive differential problems with deviating arguments [online]
PublikacjaW pracy dyskutowane są problemy brzegowe dla równań różniczkowych rzędu drugiego z impulsami i z odchylonymi argumentami. Badano przypadki dla argumentów opóźnionych i wyprzedzonych. Podano warunki które gwarantują, że omawiane problemy mają rozwiązania dodatnie. Zastosowano odpowiednie twierdzenie o punkcie stałym.
-
Existence and uniqueness of monotone and bounded solutions for a finite-difference discretization a` la Mickens of the generalized Burgers–Huxley equation.
PublikacjaDeparting from a generalized Burgers–Huxley partial differential equation, we provide a Mickens-type, nonlinear, finite-difference discretization of this model. The continuous system is a nonlinear regime for which the existence of travelling-wave solutions has been established previously in the literature. We prove that the method proposed also preserves many of the relevant characteristics of these solutions, such as the positivity,...
-
Positive solutions to advanced fractional differential equations with nonlocal boundary conditions
PublikacjaWe study the existence of positive solutions for a class of higher order fractional differential equations with advanced arguments and boundary value problems involving Stieltjes integral conditions. The fixed point theorem due to Avery-Peterson is used to obtain sufficient conditions for the existence of multiple positive solutions. Certain of our results improve on recent work in the literature.
-
Positive solutions to Sturm–Liouville problems with non-local boundary conditions
PublikacjaIn this paper, the existence of at least three non-negative solutions to non-local boundary-value problems for second-order differential equations with deviating arguments α and ζ is investigated. Sufficient conditions, which guarantee the existence of positive solutions, are obtained using the Avery–Peterson theorem. We discuss our problem for both advanced and delayed arguments. An example is added to illustrate the results.
-
Quasi-solutions for generalized second order differential equations with deviating arguments
PublikacjaThis paper deal with boundary value problems for generalized second order differential equations with deviating arguments. Existence of quasi-solutions and solutions are proved by monotone iterative method. Examples with numerical results are added.
-
Periodic solutions of Lagrangian systems under small perturbations
PublikacjaIn this paper we prove the existence of mountain pass periodic solutions of a certain class of generalized Lagrangian systems under small perturbations. We show that the found periodic solutions converge to a periodic solution of the unperturbed system if the perturbation tends to 0. The proof requires to work in a rather unusual (mixed) Orlicz–Sobolev space setting, which bears several challenges.
-
Database of the illustrative simulations of the nonstandard approximation of the generalized Burgers–Huxley equation
Dane BadawczeThe presented dataset is a result of numerical analysis of a generalized Burgers–Huxley partial differential equation. An analyzed diffusive partial differential equation consist with nonlinear advection and reaction. The reaction term is a generalized form of the reaction law of the Hodgkin–Huxley model, while the advection is a generalized form of...
-
Systems of boundary value problems of advanced differential equations
PublikacjaThis paper considers the existence of extremal solutions to systems of advanced differential equations with corresponding nonlinear boundary conditions. The monotone iterative method is applied to obtain the existence results. An example is provided for illustration.
-
Periodic Solutions of Generalized Lagrangian Systems with Small Perturbations
PublikacjaIn this paper we study the generalized Lagrangian system with a small perturbation. We assume the main term in the system to have a maximum, but do not suppose any condition for perturbation term. Then we prove the existence of a periodic solution via Ekeland’s principle. Moreover, we prove a convergence theorem for periodic solutions of perturbed systems.
-
Boundary problems for fractional differential equations
PublikacjaIn this paper, the existence of solutions of fractional differential equations with nonlinear boundary conditions is investigated. The monotone iterative method combined with lower and upper solutions is applied. Fractional differential inequalities are also discussed. Two examples are added to illustrate the results.
-
Heteroclinic solutions of Allen-Cahn type equations with a general elliptic operator
PublikacjaWe consider a generalization of the Allen-Cahn type equation in divergence form $-\rm{div}(\nabla G(\nabla u(x,y)))+F_u(x,y,u(x,y))=0$. This is more general than the usual Laplace operator. We prove the existence and regularity of heteroclinic solutions under standard ellipticity and $m$-growth conditions.
-
Weak Solutions within the Gradient-Incomplete Strain-Gradient Elasticity
PublikacjaIn this paper we consider existence and uniqueness of the three-dimensional static boundary-value problems in the framework of so-called gradient-incomplete strain-gradient elasticity. We call the strain-gradient elasticity model gradient-incomplete such model where the considered strain energy density depends on displacements and only on some specific partial derivatives of displacements of first- and second-order. Such models...
-
Topological Behaviour of Solutions of Vibro-Impact Systems in the Neighborhood of Grazing
PublikacjaThe grazing bifurcation is considered for the Newtonian model of vibro-impact systems. A brief review on the conditions, sufficient for the existence of a grazing family of periodic solutions, is given. The properties of these periodic solutions are discussed. A plenty of results on the topological structure of attractors of vibro-impact systems is known. However, since the considered system is strongly nonlinear, these attractors...
-
On weak solutions of boundary value problems within the surface elasticity of Nth order
PublikacjaA study of existence and uniqueness of weak solutions to boundary value problems describing an elastic body with weakly nonlocal surface elasticity is presented. The chosen model incorporates the surface strain energy as a quadratic function of the surface strain tensor and the surface deformation gradients up to Nth order. The virtual work principle, extended for higher‐order strain gradient media, serves as a basis for defining...
-
Homoclinics for singular strong force Lagrangian systems
PublikacjaWe study the existence of homoclinic solutions for a class of generalized Lagrangian systems in the plane, with a C1-smooth potential with a single well of infinite depth at a point ξ and a unique strict global maximum 0 at the origin.Under a strong force condition around the singular point ξ, via minimization of an action integral, we will prove the existence of at least two geometrically distinct homoclinic solutions.
-
A convergence result for mountain pass periodic solutions of perturbed Hamiltonian systems
PublikacjaIn this work, we study second-order Hamiltonian systems under small perturbations. We assume that the main term of the system has a mountain pass structure, but do not suppose any condition on the perturbation. We prove the existence of a periodic solution. Moreover, we show that periodic solutions of perturbed systems converge to periodic solutions of the unperturbed systems if the perturbation tends to zero. The assumption on...
-
Fractional problems with advanced arguments
PublikacjaThis paper concerns boundary fractional differential problems with advanced arguments. We investigate the existence of initial value problems when the initial point is given at the end point of an interval. Nonhomogeneous linear fractional differential equations are also studied. The existence of solutions for fractional differential equations with advanced arguments and with boundary value problems has been investigated by using...
-
Positive solutions for second order impulsive differential equations involving Stieltjes integral conditions
PublikacjaIn this paper we investigate integral boundary value problems for fourth order differentialequations with deviating arguments.Wediscuss our problem both for advanced or delayedarguments. We establish sufficient conditions under which such problems have positivesolutions. To obtain the existence of multiple (at least three) positive solutions, we use afixed point theorem due to Avery and Peterson. An example is also included to...
-
Fractional equations of Volterra type involving a Riemann Liouville derivative
PublikacjaIn this paper, we discuss the existence of solutions of fractional equations of Volterra type with the Riemann Liouville derivative. Existence results are obtained by using a Banach fixed point theorem with weighted norms and by a monotone iterative method too. An example illustrates the results.
-
Fractional differential equations with causal operators
PublikacjaWe study fractional differential equations with causal operators. The existence of solutions is obtained by applying the successive approximate method. Some applications are discussed including also the case when causal operator Q is a linear operator. Examples illustrate some results.
-
First-order differential equations with nonlocal boundary conditions
PublikacjaWe study a first-order boundary value problem subject to some boundary conditions given by Riemann-Stieltjes integrals. Using a monotone iterative method, we formulate sufficient conditions which guarantee the existence of extremal or quasi-solutions in the corresponding region bounded by upper and lower solutions of our problems. The case when a unique solution exists is also investigated. Some examples are given to illustrate...
-
Approximative sequences and almost homoclinic solutions for a class of second order perturbed Hamiltonian systems
PublikacjaIn this work we will consider a class of second order perturbed Hamiltonian systems with a superquadratic growth condition on a time periodic potential and a small aperiodic forcing term. To get an almost homoclinic solution we approximate the original system by time periodic ones with larger and larger time periods. These approximative systems admit periodic solutions, and an almost homoclinic solution for the original system...
-
Structured populations with diffusion and Feller conditions
PublikacjaWe prove a weak maximum principle for structured population models with dynamic boundary conditions. We establish existence and positivity of solutions of these models and investigate the asymptotic behaviour of solutions. In particular, we analyse so called size profile.
-
Positive solutions to fractional differential equations involving Stieltjes integral conditions
PublikacjaIn this paper, we investigate nonlocal boundary value problems for fractional differential equations with dependence on the first-order derivatives and deviating arguments. Sufficient conditions which guarantee the existence of at least three positive solutions are new and obtained by using the Avery–Peterson theorem. We discuss problems (1) and (2) when argument b can change the character on [0, 1], so in some subinterval I of...
-
Positive solutions to second-order differential equations with dependence on the first-order derivative and nonlocal boundary conditions
PublikacjaIn this paper, we consider the existence of positive solutions for second-order differential equations with deviating arguments and nonlocal boundary conditions. By the fixed point theorem due to Avery and Peterson, we provide sufficient conditions under which such boundary value problems have at least three positive solutions. We discuss our problem both for delayed and advanced arguments α and also in the case when α(t)=t, t∈[0,1]....
-
Parabolic Equations with Functional Dependence
PublikacjaWe consider the Cauchy problem for nonlinear parabolic equations with functional dependence and prove theorems on the existence of solutions to parabolic differential-functional equations.
-
Homoclinic orbits for an almost periodically forced singular Newtonian system in R^3
Publikacja. This work uses a variational approach to establish the existence of at least two homoclinic solutions for a family of singular Newtonian systems in R^3 which are subjected to almost periodic forcing in time variable
-
On weak solutions of the boundary value problem within linear dilatational strain gradient elasticity for polyhedral Lipschitz domains
PublikacjaWe provide the proof of an existence and uniqueness theorem for weak solutions of the equilibrium problem in linear dilatational strain gradient elasticity for bodies occupying, in the reference configuration, Lipschitz domains with edges. The considered elastic model belongs to the class of so-called incomplete strain gradient continua whose potential energy density depends quadratically on linear strains and on the gradient of...
-
Fractional Problems with Right-Handed Riemann-Liouville Fractional Derivatives
PublikacjaIn this paper, we investigate the existence of solutions for advanced fractional differential equations containing the right-handed Riemann-Liouville fractional derivative both with nonlinear boundary conditions and also with initial conditions given at the end point T of interval [0,T ]. We use both the method of successive approximations, the Banach fixed point theorem and the monotone iterative technique, as well. Linear problems...
-
Successive Iterative Method for Higher-Order Fractional Differential Equations Involving Stieltjes Integral Boundary Conditions
PublikacjaIn this paper, the existence of positive solutions to fractional differential equations with delayed arguments and Stieltjes integral boundary conditions is discussed. The convergence of successive iterative method of solving such problems is investigated. This allows us to improve some recent works. Some numerical examples illustrate the results.
-
A note on an approximative scheme of finding almost homoclinic solutions for Newtonian systems
PublikacjaIn this work we will be concerned with the existence of an almost homoclinic solution for a perturbed Newtonian system in a finite dimensional space. It is assumed that a potential is C^1 smooth and its gradient is bounded with respect to a time variable. Moreover, a forcing term is continuous, bounded and squere integrable. We will show that the appproximative scheme due to J. Janczewska for a time periodic potential extends to...
-
Homoclinic and Heteroclinic Orbits for a Class of Singular Planar Newtonian Systems
PublikacjaThe study of existence and multiplicity of solutions of differential equations possessing a variational nature is a problem of great meaning since most of them derives from mechanics and physics. In particular, this relates to Hamiltonian systems including Newtonian ones. During the past thirty years there has been a great deal of progress in the use of variational methods to find periodic, homoclinic and heteroclinic solutions...
-
Ancient settlements-atavistic solutions for present water supply and drainage problems engendered by urbanism
PublikacjaWater is the most valuable resource available on earth. Although it is present in abundance, its usable volume is very scarce. This is the reason behind the existence of both floods and droughts around the world. However, human settlements face water scarcity issues that are primarily engendered by improper town planning measures. To create a balance between the available fractions of water, it is therefore imperative to have proper...
-
Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space
PublikacjaUsing the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.