Filters
total: 448
filtered: 406
Search results for: STRAIN FIELD
-
Strain field of abdominal surface due to patients live excitations
PublicationPodano metodę opisu pola odkształceń powierzchni brzucha pacjenta podczas ruchów jego tułowia. Wyróżniono strefy brzucha o zróżnicowanej wielkości odkształceń ekstremalnych.
-
On the use of enhanced strain formulation in 6-field nonlinear shell theory with asymetric strain measures
PublicationW pracy zbadano możliwość zastosowania techniki wzbogaconych odkształceń do usunięcia zjawiska blokady w elementach skończonych opracowanych w ramach 6-parametrowej nieliniowej teorii powłok z niesymetrycznymi miarami odkształceń membranowych. Przedstawiono i porównano 4 warianty pol wzogacających odkształcenia
-
The thermodynamic critical field and specific heat of superconducting state in phosphorene under strain
Publication -
Interactions between Marek’s disease virus Rispens/CVI988 vaccine strain and adenovirus field strain in chicken embryo fibroblast (CEF) cultures
Publication -
Experimental study on shear localization in granular materials within combined strain and stress field
PublicationLokalizacja odkształceń stycznych w materiałach granulowanych była przedmiotem badań doświadczalnych podczas przemieszczania się sztywnej ścianki. Wykonano pomiary przemieszczeń stosując metodę korelacji obrazów cyfrowych. Natomiast pomiary średnich naprężeń wykonano stosując metodę foto-sprężystości. Zastosowano jako materiał granulowany piasek oraz szklane kulki.
-
Exposure to non-continuous rotating magnetic field induces metabolic strain-specific response of Komagataeibacter xylinus
Publication -
Stability analysis of nanobeams in hygrothermal environment based on a nonlocal strain gradient Timoshenko beam model under nonlinear thermal field
PublicationThis article is dedicated to analyzing the buckling behavior of nanobeam subjected to hygrothermal environments based on the principle of the Timoshenko beam theory. The hygroscopic environment has been considered as a linear stress field model, while the thermal environment is assumed to be a nonlinear stress field based on the Murnaghan model. The size-dependent effect of the nanobeam is captured by the nonlocal strain gradient...
-
Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field
PublicationThis paper considers a single-walled composite nano-shell (SWCNS) exposed in a torsional critical stability situation. As the magnetic field affects remarkably nanostructures in the small size, a three-dimensional magnetic field is assessed which contains magnetic effects along the circumferential, radial and axial coordinates system. Based on the results of the nonlocal model of strain gradient small-scale approach and the first-order...
-
Full-field in vivo experimental study of the strains of a breathing human abdominal wall with intra-abdominal pressure variation
PublicationThe presented study aims to assess the mechanical behaviour of the anterior abdominal wall based on an in vivo experiment on humans. Full-field measurement of abdominal wall displacement during changes of intra-abdominal pressure is performed using a digital image correlation (DIC) system. Continuous measurement in time enables the observation of changes in the strain field during breathing. The understanding of the mechanical...
-
Equivalent 4-node enhanced assumed strain and hybrid stress shell elements in 6-parameter theory
PublicationWe discuss the equivalence of semi-enhanced assumed strain (EAS) and semi-hybrid stress (SEM) shell finite elements. We use the general nonlinear 6-field shell theory with kinematics composed of generalized displacements composed of the translation field and the rotation field. Due to the presence of rotation tensor the elements have naturally six nodal engineering degrees of freedom. We propose interpolation for a strain field...
-
On refined constitutive equations in the six-field theory of elastic shells
PublicationWithin the resultant six-field shell theory, the second approximation to the complementary energy density of an isotropic elastic shell undergoing small strains is constructed. In this case, the resultant drilling couples are expressed explicitly by the stress resultants and stress couples as well as by amplitudes of the quadratic and cubic distributions of an intrinsic deviation vector. The refined 2D strain-stress and stress-strain...
-
Progressive failure analysis of laminates in the framework of 6-field nonlinear shell theory
PublicationThe paper presents the model of progressive failure analysis of laminates incorporated into the 6-field non-linear shell theory with non-symmetrical strain measures of Cosserat type. Such a theory is specially recommended in the analysis of shells with intersections due to its specific kinematics including the so-called drilling rotation. As a consequence of asymmetry of strain measures, modified laminates failure criteria must...
-
An enhanced method in predicting tensile behaviour of corroded thick steel plate specimens by using random field approach
PublicationThe present work investigates the possibility of using random field techniques in modelling the mechanical behaviour of corroded thick steel plate specimens. The nonlinear Finite Element method, employing the explicit dynamic solver, is used to analyse the mechanical properties of typical specimens. A material model considering full nonlinearity is used to evaluate the stress-strain response. The influence of major governing parameters...
-
Random field modelling of mechanical behaviour of corroded thin steel plate specimens
PublicationThe objective of this work is to explore the possibility of corrosion degradation modelling of thin steel plate specimens with the use of random field approach. The mechanical properties are obtained via the nonlinear Finite Element Analysis with the use of an explicit dynamic solver. The fully nonlinear material model is adopted to obtain the proper stress-strain response. Sensitivity analysis considering the main statistical...
-
Erroneous GNSS Strain Rate Patterns and their Application to Investigate the Tectonic Credibility of GNSS Velocities
PublicationThe paper concerns investigation of the credibility of tectonic interpretation of GNSS strain rates. The analysis was focused on stable regions, where the crustal deformations are small and the reliability of GNSS velocities is questionable. We are showing how the unreliable motion of stations affects calculated strains around them. We expressed distribution of local principal strains by a sinusoidal function and used them to investigate...
-
HYGRO-MAGNETIC VIBRATION OF THE SINGLE-WALLED CARBON NANOTUBE WITH NONLINEAR TEMPERATURE DISTRIBUTION BASED ON A MODIFIED BEAM THEORY AND NONLOCAL STRAIN GRADIENT MODEL
PublicationIn this study, vibration analysis of single-walled carbon nanotube (SWCNT) has been carried out by using a refined beam theory, namely one variable shear deformation beam theory. This approach has one variable lesser than a contractual shear deformation theory such as first-order shear deformation theory (FSDT) and acts like classical beam approach but with considering shear deformations. The SWCNT has been placed in an axial or...
-
Electro-chemo-mechanical properties in nanostructured Ca-doped ceria (CDC) by field assisted sintering
PublicationRecent investigations have shown that highly oxygen defective cerium oxides generate non-classical electrostriction that is superior to lead-based ferroelectrics. In this work, we report the effect of field-assisted spark plasma sintering (SPS) on electro-chemo-mechanical properties of calcium doped ceria (CDC). Nanometric powders of Ca.10 nm are rapidly consolidated to form polycrystalline nanostructures with a high degree of...
-
Nonlinear FEM analysis of irregular shells composed of fiber metal laminates
PublicationThe paper deals with the analysis of failure initiation in shells made of Fiber Metal Laminates (FML). The elas-tic material law for orthotropic lamina is stated accounting for asymmetric in-plane stress and strain measures. The asymmetry results from the employed general nonlinear 6-field shell theory where the generalized dis-placements involve the translation and the proper rotation field. The novelty of the presented results...
-
Notch fatigue analysis and life assessment using an energy field intensity approach in 7050-T6 aluminium alloy under bending-torsion loading
PublicationThis paper studies the fatigue crack initiation and fatigue crack propagation of notched cylindrical bars made of 7050-T6 aluminium alloy subjected to multiaxial bending-torsion loading. The sites of crack initiation and the angles of crack initiation were successfully predicted from the distribution of the first principal stress at the notch surface. Fatigue crack initiation lives were computed through the new concept of energy...
-
FEM analysis of composite materials failure in nonlinear six field shell theory
PublicationThe monography deals with the problem of failure initiation in thin laminated composites. Known techniques of laminate structures modelling are briefly characterised. Eventually, shell based approach is chosen for the purpose of the description of the composite structures behaviour, as it predicts their deformation and states of stress effectively in a global sense. The nonlinear six parameter shell theory (6p theory) with asymmetric...
-
On Nonlinear Bending Study of a Piezo-Flexomagnetic Nanobeam Based on an Analytical-Numerical Solution
PublicationAmong various magneto-elastic phenomena, flexomagnetic (FM) coupling can be defined as a dependence between strain gradient and magnetic polarization and, contrariwise, elastic strain and magnetic field gradient. This feature is a higher-order one than piezomagnetic, which is the magnetic response to strain. At the nanoscale, where large strain gradients are expected, the FM effect is significant and could be even dominant. In...
-
On the Equations of the Surface Elasticity Model Based on the Theory of Polymeric Brushes
PublicationMotivating by theory of polymers, in particular, by the models of polymeric brushes we present here the homogenized (continual) two-dimensional (2D) model of surface elasticity. A polymeric brush consists of an system of almost aligned rigid polymeric chains. The interaction between chain links are described through Stockmayer potential, which take into account also dipole-dipole interactions. The presented 2D model can be treated...
-
Flexomagnetic response of buckled piezomagnetic composite nanoplates
PublicationIn this paper, the equation governing the buckling of a magnetic composite plate under the influence of an in-plane one-dimensional magnetic field, assuming the concept of flexomagnetic and considering the resulting flexural force and moment, is investigated for the first time by different analytical boundary conditions. To determine the equation governing the stability of the plate, the nonlocal strain gradient theory has been...
-
Estimation of Failure Initiation in Laminated Composites by means of Nonlinear Six-Field Shell Theory and FEM
PublicationThe monography deals with the problem of failure initiation in thin laminated composites. Known techniques of laminate structures modelling are briefly characterised. Eventually, shell based approach is chosen for the purpose of the description of the composite structures behaviour, as it predicts their deformation and states of stress effectively in a global sense. The nonlinear six parameter shell theory (6p theory) with asymmetric...
-
Process zone in the Single Cantilever Beam under transverse loading. - Part II: Experimental
PublicationThis paper describes an experimental arrangement to evaluate stress/strain fields in the process zone of asymmetric adhesively bonded joints. A transparent polycarbonate flexible beam was bonded to an aluminium alloy rigid block with an epoxy adhesive in a Single Cantilever Beam (SCB) configuration. The flexible adherend was loaded in the direction parallel to the initial crack front at constant rate. To monitor strains induced...
-
Modelling tunnelling-induced deformation in stiff soils with a hyperelastic–plastic anisotropic model
PublicationIn this paper, the tunnelling-induced deformation in anisotropic stiff soils is analysed using FE modelling. The influence of material description is investigated rather than an advanced simulation of the tunnelling method. A new hyperelastic– plastic model is proposed to describe the anisotropic mechanical behaviour of stiff highly overconsolidated soil. This model can reproduce the superposition of variable stress-induced anisotropy...
-
A Review of Hyperelastic Constitutive Models for Dielectric Elastomers
PublicationDielectric elastomers are smart materials that are essential components in soft systems and structures. The core element of a dielectric elastomer is soft matter, which is mainly rubber-like and elastomeric. These soft materials show a nonlinear behaviour and have a nonlinear strain-stress curve. The best candidates for modelling the nonlinear behaviour of such materials are hyperelastic strain energy functions. Hyperelastic functions...
-
Effect of Axial Porosities on Flexomagnetic Response of In-Plane Compressed Piezomagnetic Nanobeams
PublicationWe investigated the stability of an axially loaded Euler–Bernoulli porous nanobeam considering the flexomagnetic material properties. The flexomagneticity relates to the magnetization with strain gradients. Here we assume both piezomagnetic and flexomagnetic phenomena are coupled simultaneously with elastic relations in an inverse magnetization. Similar to flexoelectricity, the flexomagneticity is a size-dependent property. Therefore,...
-
On the plastic buckling of curved carbon nanotubes
PublicationThis research, for the first time, predicts theoretically static stability response of a curved carbon nanotube (CCNT) under an elastoplastic behavior with several boundary conditions. The CCNT is exposed to axial compressive loads. The equilibrium equations are extracted regarding the Euler–Bernoulli displacement field by means of the principle of minimizing total potential energy. The elastoplastic stress-strain is concerned...
-
Long‐time scale simulations of virus‐like particles from three human‐norovirus strains
PublicationThe dynamics of the virus like particles (VLPs) corresponding to the GII.4 Houston, GII.2 SMV, and GI.1 Norwalk strains of human noroviruses (HuNoV) that cause gastroenteritis was investigated by means of long-time (about 30 μs in the laboratory timescale) molecular dynamics simulations with the coarse-grained UNRES force field. The main motion of VLP units turned out to be the bending at the junction between the P1 subdomain (that...
-
UNRES-GPU for Physics-Based Coarse-Grained Simulations of Protein Systems at Biological Time- and Size-Scales
PublicationThe dynamics of the virus like particles (VLPs) corresponding to the GII.4 Houston, GII.2 SMV, and GI.1 Norwalk strains of human noroviruses (HuNoV) that cause gastroenteritis was investigated by means of long-time (about 30 μs in the laboratory timescale) molecular dynamics simulations with the coarse-grained UNRES force field. The main motion of VLP units turned out to be the bending at the junction between the P1 subdomain (that...
-
A fast procedure of stress state evaluation in magnetically anisotropic steels with the help of a probe with adjustable magnetizing field direction
PublicationThe paper presents a novel approach to the stress state evaluation issue. It deals with a strongly (magnetically) anisotropic materials for which a direct interpretation of the Barkhausen effect (BE) intensity would lead to erroneous results. In such a case one has to take into account both the measured BE intensity and the orientation of the magnetisation direction relative to the magnetic easy axis. For the in plane stress distribution...
-
The dependence of linear viscoelasticity limits of cold-recycled mixtures on time of curing and compaction method
PublicationCold-recycled mixtures are currently among the most widely used and investigated methods that enable recycling of old pavement structures in an environmentally friendly manner. Upon milling, the old pavement structure – whose gradation can be improved with addition of virgin aggregate – is mixed and compacted at ambient temperature. The main binding agents are bituminous emulsion and cement. Due to their dual binding behaviour,...
-
Influence of soil anisotropic stiffness on the deformation induced by an open pit excavation.
PublicationIn this paper, the problem of deformation induced by an open pit excavation in anisotropic stiff soils is analysed by FE modelling. The presented research is focused on the influence of material model with anisotropic stiffness on the accuracy of deformation predictions as compared with the field measurements. A new hyperelastic-plastic model is applied to simulate anisotropic mechanical behaviour of stiff soils. It is capable...
-
Static Load Test on Instrumented Pile – Field Data and Numerical Simulations
PublicationFor some time (since 8-10 years in Poland) a special static load tests on instrumented piles are carried out. Such studies are usually of a scientific nature and provide detailed quantitative data on the load transfer into the ground and characteristics of particular soil layers interaction with a pile shaft and pile base. Deep knowledge about the pile-subsoil interaction can be applied for a various design purposes, e.g. numerical...
-
Characterization of fracture process in polyolefin fibre-reinforced concrete using ultrasonic waves and digital image correlation
PublicationThis study explores the monitoring of the fracture process in concrete beams and aims to characterize the evolution of damage in polyolefin fibre-reinforced concrete beams by utilizing the integrated application of two measurement techniques, digital image correlation and ultrasonic testing. The interpretation of registered wave time histories data was provided by the calculation of the magnitude-phase-composite metrics. An efficient...
-
A selectively reduced degree basis for efficient mixed nonlinear isogeometric beam formulations with extensible directors
PublicationThe effect of higher order continuity in the solution field by using NURBS basis function in isogeometric analysis (IGA) is investigated for an efficient mixed finite element formulation for elastostatic beams. It is based on the Hu–Washizu variational principle considering geometrical and material nonlinearities. Here we present a reduced degree of basis functions for the additional fields of the stress resultants and strains...
-
On dynamic modeling of piezomagnetic/flexomagnetic microstructures based on Lord–Shulman thermoelastic model
PublicationWe study a time-dependent thermoelastic coupling within free vibrations of piezomagnetic (PM) microbeams considering the flexomagnetic (FM) phenomenon. The flexomagneticity relates to a magnetic field with a gradient of strains. Here, we use the generalized thermoelasticity theory of Lord–Shulman to analyze the interaction between elastic deformation and thermal conductivity. The uniform magnetic field is permeated in line with...
-
On existence and uniqueness of weak solutions for linear pantographic beam lattices models
PublicationIn this paper, we discuss well-posedness of the boundary-value problems arising in some “gradientincomplete” strain-gradient elasticity models, which appear in the study of homogenized models for a large class ofmetamaterials whosemicrostructures can be regarded as beam lattices constrained with internal pivots. We use the attribute “gradient-incomplete” strain-gradient elasticity for a model in which the considered strain energy...
-
Periodic Properties of 1D FE Discrete Models in High Frequency Dynamics
PublicationFinite element discrete models of various engineering 1D structures may be considered as structures of certain periodic characteristics. The source of this periodicity comes from the discontinuity of stress/strain field between the elements. This behaviour remains unnoticeable, when low frequency dynamics of these structures is investigated. At high frequency regimes, however, its influence may be strong enough to dominate calculated...
-
Effect of surface on the flexomagnetic response of ferroic composite nanostructures; nonlinear bending analysis
PublicationOur analysis incorporates the geometrically nonlinear bending of the Euler-Bernoulli ferromagnetic nanobeam accounting for a size-dependent model through assuming surface effects. In the framework of the flexomagnetic phenomenon, the large deflections are investigated referring to von-Kármán nonlinearity. Employing the nonlocal effects of stress coupled to the gradient of strain generates a scale-dependent Hookean stress-strain...
-
Robust four-node elements based on Hu–Washizu principle for nonlinear analysis of Cosserat shells
PublicationMixed 4-node shell elements with the drilling rotation and Cosserat-type strain measures based onthe three-field Hu–Washizu principle are proposed. In the formulation, apart from displacement and rotationfields, both strain and stress resultant fields are treated as independent. The elements are derived in the frame-work of a general nonlinear 6-parameter shell theory dedicated to the analysis of multifold irregular shells.The...
-
MONITORING SYSTEM OF THE ROAD EMBANKMENT
PublicationThe paper presents the analysis of the monitoring system of the embankment supported on concrete columns and overlaid by a load transfer platform with the embedded steel grid. This field investigation was to study the complex interaction among the columns, the load transfer platform layer, and steel grid via in situ measurements during erection and live loading of the embankment. The study was focused on the behaviour of steel...
-
On mechanics of piezocomposite shell structures
PublicationThis study presents an original and novel investigation into the mechanics of piezo-flexo-magneto-elastic nanocomposite doubly-curved shells (PFMDCSs) and the ability to detect the lower and higher levels of electro-magnetic fields. In this context, by utilizing the first-order shear deformation shell model, stresses and strains are acquired. By imposing Hamilton's principle and the von Kármán approach, the governing equations...
-
Finite Element Method Applied in Electromagnetic NDTE: - A Review
PublicationThe paper contains an original comprehensive review of finite element analysis (FEA) applied by researchers to calibrate and improve existing and developing electromagnetic non-destructive testing and evaluation techniques, including but not limited to magnetic flux leakage (MFL), eddy current testing, electromagnetic-acoustic transducers (EMATs). Premium is put on the detection and modelling of magnetic field, as the vast majority...
-
Laminaty FRP w budownictwie - charakterystyka materiału i aspekty projektowania
PublicationW artykule przedstawiono charakterystykę laminatów polimerowych wzmacnianych włóknami. W pierwszej części zaprezentowano teoretyczne modele materiałowe, podstawowe zależności naprężenie-odkształcenie włókien, matrycy oraz laminatu powstałego przez połączenie obydwu składników. Na tej podstawie sformułowano zalecenia dotyczące praktycznego wykorzystania laminatu w kontekście jego wytężenia w projektowaniu elementów konstrukcyjnych....
-
The Influence of Selected Parameters of Numerical Modelling on Strains and Stresses at Weld Toe Notch
PublicationLatest development in the field of welding technology and prefabrication enabled massive production of thin-walled sandwich structures. Multi-layered sandwich structures are fabricated with the use of high-power CO2 lasers, friction welding, arc welding, hybrid welding, or other technique designed for the special purpose. Steel or aluminium alloy plates with thickness between 1 and 5 mm are connected by internal stiffeners. Strength...
-
Application of the Mathar method to identify internal stress variation in steel as a welding process result
PublicationThe paper deals with the method to identify internal stresses in two-dimensional steel members. Steel members were investigated in the delivery stage and after assembly, by means of electric-arc welding. In order to perform the member assessment two methods to identify the stress variation were applied. The first is a non-destructive measurement method employing local external magnetic field and to detecting the induced voltage,...
-
Transient response of oscillated carbon nanotubes with an internal and external damping
PublicationThe present works aims at modeling a viscoelastic nanobeam with simple boundary conditions at the two ends with the introduction of the Kelvin-Voigt viscoelasticity in a nonlocal strain gradient theory. The nanobeam lies on the visco-Pasternak matrix in which three characteristic parameters have a prominent role. A refined Timoshenko beam theory is here applied, which is only based on one unknown variable, in accordance with the...
-
Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment
PublicationStress-driven nonlocal theory of elasticity, in its differential form, is applied to investigate the nonlinear vibrational characteristics of a hetero-nanotube in magneto-thermal environment with the help of finite element method. In order to more precisely deal with the dynamic behavior of size-dependent nanotubes, a two-node beam element with six degrees-of freedom including the nodal values of the deflection, slope and curvature...