Filters
total: 1651
filtered: 1082
-
Catalog
Chosen catalog filters
displaying 1000 best results Help
Search results for: ARTIFICIAL INTELLIGENCE TRAINING
-
Self-assemblies of novel magnesium porphyrins mimicking natural chlorosomal bacteriochlorophylls
PublicationSelf-assembling porphyrins are promising materials to mimic natural bacteriochlorophylls c, d, or e encountered in the chlorosomes of photosynthetic bacteria. We have studied four novel magnesium porphyrins mimicking this chlorosomal antenna system. In contrast to previous articles reporting synthetic Zn-porphyrins, our studies focus on porphyrins with Mg as the central atom, which mimic more closely the natural bacteriochlorophylls....
-
Examining Classifiers Applied to Static Hand Gesture Recognition in Novel Sound Mixing System
PublicationThe main objective of the chapter is to present the methodology and results of examining various classifiers (Nearest Neighbor-like algorithm with non-nested generalization (NNge), Naive Bayes, C4.5 (J48), Random Tree, Random Forests, Artificial Neural Networks (Multilayer Perceptron), Support Vector Machine (SVM) used for static gesture recognition. A problem of effective gesture recognition is outlined in the context of the system...
-
Music Mood Visualization Using Self-Organizing Maps
PublicationDue to an increasing amount of music being made available in digital form in the Internet, an automatic organization of music is sought. The paper presents an approach to graphical representation of mood of songs based on Self-Organizing Maps. Parameters describing mood of music are proposed and calculated and then analyzed employing correlation with mood dimensions based on the Multidimensional Scaling. A map is created in which...
-
Expert systems in assessing the construction process safety taking account of the risk of disturbances
PublicationThe objective of the paper is to present the issue of safety manage-ment during the construction process. Threats in the form of disturb-ances may occur in the preparatory phase, during the execution of the construction project and also during its operational use. The arti-cle presents the concept of applying the methodology based, among others, on Learning Bayesian Networks, Artificial Neural Networks and Support Vector Machine,...
-
Quality assurance of alcoholic beverages by electronic nose
PublicationQuality is very important attribute of every alcoholic beverage. It is very significant to satisfy consumers and assure food quality. Flavour, colour and taste constitute a great matter not only for connoisseurs. Due to these features, the whole manufacturing process need to be monitored. This paper presents a high-class devices useful in assessing of beverage quality. Electronic noses offer quick real-time analysis, which is very...
-
Speed Sensorless AC Drive with Inverter LC Filter and Fault Detection Using Load Torque Signal
PublicationThe industrial development in recent years has seen a major increase in the use of induction motors, whereby the cost has to be as low as possible and the lifetime as long as possible. To follow up this desire, investigations in this area have become very intense. For that reason, this paper presents a solution for driving an induction motor and simultaneous fault detection with no need for additional sensors. In order to achieve...
-
Machine Learning in Multi-Agent Systems using Associative Arrays
PublicationIn this paper, a new machine learning algorithm for multi-agent systems is introduced. The algorithm is based on associative arrays, thus it becomes less complex and more efficient substitute of artificial neural networks and Bayesian networks, which is confirmed by performance measurements. Implementation of machine learning algorithm in multi-agent system for aided design of selected control systems allowed to improve the performance...
-
Analysis of 2D Feature Spaces for Deep Learning-based Speech Recognition
Publicationconvolutional neural network (CNN) which is a class of deep, feed-forward artificial neural network. We decided to analyze audio signal feature maps, namely spectrograms, linear and Mel-scale cepstrograms, and chromagrams. The choice was made upon the fact that CNN performs well in 2D data-oriented processing contexts. Feature maps were employed in the Lithuanian word recognition task. The spectral analysis led to the highest word...
-
Optimized Deep Learning Model for Flood Detection Using Satellite Images
PublicationThe increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...
-
Dataset Related Experimental Investigation of Chess Position Evaluation Using a Deep Neural Network
PublicationThe idea of training Articial Neural Networks to evaluate chess positions has been widely explored in the last ten years. In this paper we investigated dataset impact on chess position evaluation. We created two datasets with over 1.6 million unique chess positions each. In one of those we also included randomly generated positions resulting from consideration of potentially unpredictable chess moves. Each position was evaluated...
-
Difference in Perceived Speech Signal Quality Assessment Among Monolingual and Bilingual Teenage Students
PublicationThe user perceived quality is a mixture of factors, including the background of an individual. The process of auditory perception is discussed in a wide variety of fields, ranging from engineering to medicine. Many studies examine the difference between musicians and non-musicians. Since musical training develops musical hearing and other various auditory capabilities, similar enhancements should be observable in case of bilingual...
-
Investigation of Performance and Energy Consumption of Tokenization Algorithms on Multi-core CPUs Under Power Capping
PublicationIn this paper we investigate performance-energy optimization of tokenizer algorithm training using power capping. We focus on parallel, multi-threaded implementations of Byte Pair Encoding (BPE), Unigram, WordPiece, and WordLevel run on two systems with different multi-core CPUs: Intel Xeon 6130 and desktop Intel i7-13700K. We analyze execution times and energy consumption for various numbers of threads and various power caps...
-
To Work or Not to Work… in a Multicultural Team?
PublicationThe main goal of the article is to present research findings regarding student’s attitude to working in a multicultural team (MCT). Research participants of different cultural background completed the research survey. Their willingness to work in MCT was measured together with factors that influence it. These include factors related to both team members and the task structure. Research findings indicate that the respondents preferred...
-
Theory vs. practice. Searching for a path of practical education
PublicationThe introduction of a three-tier model of higher education (the Bologna model) has led to considerable changes in the 1st- and 2nd-tier technical courses at universities. At present, a student with a bachelor’s degree can be employed in his / her profession after completing only 7 semesters of study. A search is under way for methods of combining theoretical knowledge taught at universities with practical knowledge gained afterwards....
-
CNN Architectures for Human Pose Estimation from a Very Low Resolution Depth Image
PublicationThe paper is dedicated to proposing and evaluating a number of convolutional neural network architectures for calculating a multiple regression on 3D coordinates of human body joints tracked in a single low resolution depth image. The main challenge was to obtain a high precision in case of a noisy and coarse scan of the body, as observed by a depth sensor from a large distance. The regression network was expected to reason about...
-
Detection, classification and localization of acoustic events in the presence of background noise for acoustic surveillance of hazardous situations
PublicationEvaluation of sound event detection, classification and localization of hazardous acoustic events in the presence of background noise of different types and changing intensities is presented. The methods for discerning between the events being in focus and the acoustic background are introduced. The classifier, based on a Support Vector Machine algorithm, is described. The set of features and samples used for the training of the...
-
An Improved Convolutional Neural Network for Steganalysis in the Scenario of Reuse of the Stego-Key
PublicationThe topic of this paper is the use of deep learning techniques, more specifically convolutional neural networks, for steganalysis of digital images. The steganalysis scenario of the repeated use of the stego-key is considered. Firstly, a study of the influence of the depth and width of the convolution layers on the effectiveness of classification was conducted. Next, a study on the influence of depth and width of fully connected...
-
Antecedents to Achieve Kanban Optimum Benefits in Software Companies
PublicationIn 2004, Kanban successfully entered into the Agile and Lean realm. Since then software companies have been increasingly using it in software development teams. The goal of this study is to perform an empirical investigation on antecedents considered as important for achieving optimum benefits of Kanban use and to discuss the practical implications of the findings. We conducted an online survey with software professionals from...
-
Estimation of the Ultimate Strength of FRP Strips-to-Masonry Substrates Bond
PublicationFiber-Reinforced Polymers (FRP) were developed as a new method over the past decades due to their many beneficial mechanical properties, and they are commonly applied to strengthen masonry structures. In this paper, the Artificial Neural Network (ANN), K-fold Cross-Validation (KFCV) technique, Multivariate Adaptive Regression Spline (MARS) method, and M5 Model Tree (M5MT) method were utilized to predict the ultimate strength of...
-
The authenticity in social media. Club and football players’ relations
PublicationThe authenticity in social media is one of the crucial factors of brands success. In the era of fake news, illusions, manipulations or other artificial attributes of the virtuality and reality today it is a real source of value. The presented study aims to verify how football club and football players’ brands’ authenticity influence attitudinal loyalty in social media. Findings proved that the authenticity is something social media...
-
Sulfate‐reducing bacteria‐assisted hydrogen‐induced stress cracking of 2205 duplex stainless steels
PublicationThe paper presents the results of a laboratory investigation of the microbiologically assisted hydrogen‐induced stress cracking (HISC) of 2,205 duplex stainless steel (DSS). The testing of susceptibility toward HISC was performed with two different methods. Precharged in sulfate‐reducing bacteria (SRB), inoculated medium samples were subjected to slow strain‐rate testing in artificial seawater. In situ constant load tests were...
-
Accurate and continuous adhesive fracture energy determination using an instrumented wedge test
PublicationThe wedge test and the related double cantilever beam test are practical methods of assessing structural adhesive fracture energy. In the former, and to a lesser extent the latter, a recognised problem is the difficulty of following the length of the growing crack, required to calculate fracture energy with any accuracy. We present a novel method of measurement of crack length that has the advantages of being accurate and allowing...
-
Multi-Camera Vehicle Tracking Using Local Image Features and Neural Networks
PublicationA method for tracking moving objects crossing fields of view of multiple cameras is presented. The algorithm utilizes Artificial Neural Networks (ANNs). Each ANN is trained to recognize images of one moving object acquired by a single camera. Local image features calculated in the vicinity of automatically detected interest points are used as object image parameters. Next, ANNs are employed to identify the same objects captured...
-
Numerical Model of the Aortic Valve Implanted Within Real Human Aorta
PublicationCardiovascular system diseases are the main cause of deaths in developed and developing countries. The main reasons are myocardial infarction, heart failure, stroke and valvular diseases. These are caused mainly by arteriosclerosis. The valvular diseases involve a significant burden for the health care system and their frequency is rising with the patient age. This work describes the tools and numerical models appropriate for modeling...
-
Do the New Requirements for the Use of Energy Efficient Lighting Design Mean the End of Creativity?,
PublicationThis paper addresses issues strongly connected to recent environmental discussions which are currently taking place in Europe, Asia, America, Australia and other parts of the world about global warming, the Greenhouse Effect, light pollution and other negative impacts artificial lighting has on our planet and what can be done about it. The author also attempts to answer indirectly two of the most important questions for lighting...
-
Application Of Generative Adversarial Network for Data Augmentation and Multiplication to Automated Cell Segmentation of the Corneal Endothelium
PublicationConsidering the automatic segmentation of the endothelial layer, the available data of the corneal endothelium is still limited to a few datasets, typically containing an average of only about 30 images. To fill this gap, this paper introduces the use of Generative Adversarial Networks (GANs) to augment and multiply data. By using the ``Alizarine'' dataset, we train a model to generate a new synthetic dataset with over 513k images....
-
Consumerism and the Quality of Life
PublicationHigh level of consumption, driven by marketing activities, the pleasure and joy of possession and the accumulation of material goods are often associated with prosperity, sense of happiness and fulfilment in life. On a broader scale, economic indicators related to production and consumption are used to define the well-being and quality of life in societies. Unfortunately, the phenomenon of consumerism entails negative social and...
-
Fragmentation of Hydrographic Big Data Into Subsets During Reduction Process
PublicationThe article presented problems of fragmentation of hydrographic big data into smaller subsets during reduction process. Data reduction is a processing of reduce the value of the data set, in order to make them easier and more effective for the goals of the analysis. The main aim of authors is to create new reduction method. The article presented the first stage of this method – fragmentation of bathymetric data into subsets. It...
-
Effects of the polyhistidine tag on kinetics and other properties of trehalose synthase from Deionococcus geothermalis
PublicationTwo recombinant trehalose synthases from Deinococcus geothermalis (DSMZ 11300) were compared. A significant influence of the artificial polyhistidine tag was observed in protein constitution. The recombinant trehalose synthase from D. geothermalis with His6 -tag has a higher K m value of 254 mM, in comparison with the wild-type trehalose synthase (K m 170 mM), and displayed a lower activity of maltose conversion when compared...
-
Dynamic Bankruptcy Prediction Models for European Enterprises
PublicationThis manuscript is devoted to the issue of forecasting corporate bankruptcy. Determining a firm’s bankruptcy risk is one of the most interesting topics for investors and decision-makers. The aim of the paper is to develop and to evaluate dynamic bankruptcy prediction models for European enterprises. To conduct this objective, four forecasting models are developed with the use of four different methods—fuzzy sets, recurrent and...
-
Głowice optoelektroniczne bezzałogowych środków latających
PublicationBezzałogowe środki latające nie wymagają długiego i kosztownego szkolenia załóg. Koszty ich wdrożenia są wielokrotnie niższe od załogowych środków latających. Bezzałogowe środki latające są następcami załogowych pojazdów latających rozpoznawczych i obserwacyjnych. Jednym z podstawowych elementów wyposażania bezzałogowego środka latającego jest głowica optoelektroniczna. Głowice wyposażone są w systemy rejestracji i śledzenia wskazanych...
-
Zastosowanie elektronicznych zmysłów w analizie żywności. Zastosowanie elektronicznego języka w analizie żywności.
PublicationW dzisiejszych czasach konsumenci zwracają dużą uwagę na takie cechy żywności jak: zapach, smak i wygląd. Ze względu na to naukowcy od wielu lat podejmują próby naśladowania ludzkich narządów zmysłów za pomocą urządzeń określanych jako elektroniczne zmysły. Zaliczamy do nich elektroniczny nos i język oraz komputerowy system rozróżnienia barw i kształtów. Elektroniczny język znany również jako sztuczny język lub czujnik smaku,...
-
Music information analysis and retrieval - a review
PublicationW referacie przedstawiono wybrane zagadnienia związane z analizą i wyszukiwaniem informacji muzycznej. Przegląd ten został oparty na literaturze związanej z dziedziną informatyki muzycznej i koncentruje się wokół problemu parametryzacji dźwięków muzycznych i sygnałów fonicznych oraz analizie przydatności wybranych metod tzw. sztucznej inteligencji (ang. computational intelligence) do akwizycji i rozpoznawania obiektów muzycznych...
-
Social media and efficient computer infrastructure in smart city
PublicationSocial media require an efficient infrastructures of computer and communication systems to support a smart city. In a big city, there are several crucial dilemmas with a home and public space planning, a growing population, a global warming, carbon emissions, a lack of key resources like water and energy, and a traffic congestion. In a smart city, we expect an efficient and sustainable transportation, efficient management of resources...
-
Journey towards light – evolutionary adaptations of humans, flora and fauna. Guidelines for safe and healthy illumination
PublicationThe paper examines using relatively recent discoveries on how evolution has embedded within all living organisms a natural sensitivity towards their native environment, in particular luminance levels and specific wavelengths of light. The studies conducted so far indicate that lighting installations that are visible after dark impact on humans, flora and fauna and influence our evolutionary dispositions, possibly with negative...
-
Człowiek zanurzony w rzeczywistości wirtualnej na przykładzie Laboratorium Zanurzonej Wizualizacji Przestrzennej
PublicationArtykuł opisuje Laboratorium Zanurzonej Wizualizacji Przestrzennej (LZWP), które umożliwia swobodną podróż w czasie i przestrzeni. Jego podstawowym wyposażeniem jest jaskinia rzeczywistości wirtualnej, czyli pomieszczenie o ścianach, suficie i podłodze stanowiących ekrany projekcyjne, wyświetlające generowane komputerowo obrazy 3D, tworzące spójny widok jednej sceny. Człowiek znajdujący się w takiej jaskini jest zatem zanurzony...
-
Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks
PublicationThe presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods....
-
DOROTKA, czyli Doskonalenie Organizacji, ROzwoju oraz Tworzenia Kursów Akademickich przez Internet.
PublicationW artykule zaprezentowano dedykowaną platformę wspierającą kształcenie na odległość opracowaną i uruchomioną w ramach projektu Leonardo da Vinci TeleCAD (Teleworkers Training for CAD System Users, 1998-2001), wykorzystywaną w latach 2000-2003 do wspomagania przedmiotu Podstawy Informatyki na Wydziale Inżynierii Lądowej Politechniki Gdańskiej. Przedstawiono również, bazujący na wieloletnich doświadczeniach, model DOROTKA (Doskonalenie...
-
Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio
PublicationThe purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...
-
Low-Cost Data-Driven Surrogate Modeling of Antenna Structures by Constrained Sampling
PublicationFull-wave electromagnetic (EM) analysis has become one of the major design tools for contemporary antenna structures. Although reliable, it is computationally expensive which makes automated simulation-driven antenna design (e.g., parametric optimization) difficult. This difficulty can be alleviated by utilization of fast and accurate replacement models (surrogates). Unfortunately, conventional data-driven modeling of antennas...
-
Paradygmat jakościowy w analizie interakcji międzykulturowych – interpretacja na bazie wybranych teorii psychologicznych
PublicationIntercultural interactions in a multicultural work environment are a peculiar type of social interactions. The results of prior research on the effects of interactions in such environment are inconclusive. The majority of the previous studies have emphasized problems, applied a quantitative methodology and interpreted the results with regard to social identity and categorization theory, information-processing theory and intergroup contact...
-
Cloud solutions as a platform for building advanced learning platform, that stimulate the real work environment for project managers
PublicationImproving skills of managers and executives require, that during the transfer of knowledge (in different ways: during studies, trainings, workshops and other forms of education) it is necessary to use tools and solutions that are (or will be) used in real world environments, where people being educated are working or will work. Cloud solutions allow educational entities (universities, training companies, trainers, etc.) to provide...
-
Ranking Speech Features for Their Usage in Singing Emotion Classification
PublicationThis paper aims to retrieve speech descriptors that may be useful for the classification of emotions in singing. For this purpose, Mel Frequency Cepstral Coefficients (MFCC) and selected Low-Level MPEG 7 descriptors were calculated based on the RAVDESS dataset. The database contains recordings of emotional speech and singing of professional actors presenting six different emotions. Employing the algorithm of Feature Selection based...
-
Neural Modelling of Steam Turbine Control Stage
PublicationThe paper describes possibility of steam turbine control stage neural model creation. It is of great importance because wider application of green energy causes severe conditions for control of energy generation systems operation Results of chosen steam turbine of 200 MW power measurements are applied as an example showing way of neural model creation. They serve as training and testing data of such neural model. Relatively simple...
-
Multi-objective design optimization of antennas for reflection, size, and gain variability using kriging surrogates and generalized domain segmentation
PublicationCost-efficient multi-objective design optimization of antennas is presented. The framework exploits auxiliary data-driven surrogates, a multi-objective evolutionary algorithm for initial Pareto front identification, response correction techniques for design refinement, as well as generalized domain segmentation. The purpose of this last mechanism is to reduce the volume of the design space region that needs to be sampled in order...
-
Improved Uniform Sampling in Constrained Domains for Data-Driven Modelling of Antennas
PublicationData-driven surrogate modelling of antenna structures is an attractive way of accelerating the design process, in particular, parametric optimization. In practice, construction of surrogates is hindered by curse of dimensionality as well as wide ranges of geometry parameters that need to be covered in order to make the model useful. These difficulties can be alleviated by constrained performance-driven modelling with the surrogate...
-
Investigating Feature Spaces for Isolated Word Recognition
PublicationThe study addresses the issues related to the appropriateness of a two-dimensional representation of speech signal for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and time-frequency signal representation converted to the investigated feature spaces. In particular, waveforms and fractal dimension features of the signal were chosen for the time domain, and...
-
Rapid Multi-band Patch Antenna Yield Estimation Using Polynomial Chaos-Kriging
PublicationYield estimation of antenna systems is important to check their robustness with respect to the uncertain sources. Since the Monte Carlo sampling-based real physics simulation model evaluations are computationally intensive, this work proposes the polynomial chaos-Kriging (PC-Kriging) metamodeling technique for fast yield estimation. PC-Kriging integrates the polynomial chaos expansion (PCE) as the trend function of Kriging metamodel...
-
Impact of Visual Image Quality on Lymphocyte Detection Using YOLOv5 and RetinaNet Algorithms
PublicationLymphocytes, a type of leukocytes, play a vital role in the immune system. The precise quantification, spatial arrangement and phenotypic characterization of lymphocytes within haematological or histopathological images can serve as a diagnostic indicator of a particular lesion. Artificial neural networks, employed for the detection of lymphocytes, not only can provide support to the work of histopathologists but also enable better...
-
Improving SBR Performance Alongside with Cost Reduction through Optimizing Biological Processes and Dissolved Oxygen Concentration Trajectory
PublicationAuthors of this paper take under investigation the optimization of biological processes during the wastewater treatment in sequencing batch reactor (SBR) plant. A designed optimizing supervisory controller generates the dissolved oxygen (DO) trajectory for the lower level parts of the hierarchical control system. Proper adjustment of this element has an essential impact on the efficiency of the wastewater treatment process as well...