Filters
total: 5769
filtered: 4324
-
Catalog
- Publications 4324 available results
- Journals 10 available results
- Conferences 2 available results
- People 42 available results
- Inventions 2 available results
- Projects 2 available results
- Laboratories 1 available results
- e-Learning Courses 65 available results
- Events 10 available results
- Open Research Data 1311 available results
Chosen catalog filters
displaying 1000 best results Help
Search results for: FREE BOUNDARY PROBLEM
-
An isogeometric finite element formulation for boundary and shell viscoelasticity based on a multiplicative surface deformation split
PublicationThis work presents a numerical formulation to model isotropic viscoelastic material behavior for membranes and thin shells. The surface and the shell theory are formulated within a curvilinear coordinate system,which allows the representation of general surfaces and deformations. The kinematics follow from Kirchhoff–Love theory and the discretization makes use of isogeometric shape functions. A multiplicative split of the surface...
-
Size effect in concrete beams under bending – influence of the boundary layer and the numerical description of cracks
PublicationIn the paper the size effect phenomenon in concrete is analysed. The results of numerical simulations of using FEM on geometrically similar un-notched and notched concrete beams under bending are presented. Concrete beams of four different sizes and five different notch heights under three-point bending test were simulated. In total 18 beams were analysed. Two approaches were used to describe cracks in concrete. First, eXtended...
-
On existence and uniqueness of weak solutions for linear pantographic beam lattices models
PublicationIn this paper, we discuss well-posedness of the boundary-value problems arising in some “gradientincomplete” strain-gradient elasticity models, which appear in the study of homogenized models for a large class ofmetamaterials whosemicrostructures can be regarded as beam lattices constrained with internal pivots. We use the attribute “gradient-incomplete” strain-gradient elasticity for a model in which the considered strain energy...
-
Practical Approach to Large-Scale Electronic Structure Calculations in Electrolyte Solutions via Continuum-Embedded Linear-Scaling Density Functional Theory
PublicationWe present the implementation of a hybrid continuum-atomistic model for including the effects of a surrounding electrolyte in large-scale density functional theory (DFT) calculations within the Order-N Electronic Total Energy Package (ONETEP) linear-scaling DFT code, which allows the simulation of large complex systems such as electrochemical interfaces. The model represents the electrolyte ions as a scalar field and the solvent...
-
Exact resultant equilibrium conditions in the non-linear theory of branching and self-intersecting shells
PublicationWe formulate the exact, resultant equilibrium conditions for the non-linear theory of branching and self-intersecting shells. The conditions are derived by performing direct through-the-thickness integration in the global equilibrium conditions of continuum mechanics. At each regular internal and boundary point of the base surface our exact, local equilibrium equations and dynamic boundary conditions are equivalent, as expected,...
-
Steady magnetohydrodynamic flow in a diverging channel with suction or blowing
PublicationAn analysis is made of steady two-dimensional divergent flow of an electrically conducting incompressible viscous fluid in a channel formed by two non-parallel walls, the flow being caused by a source of fluid volume at the intersection of the walls. The fluid is permeated by a magnetic field produced by an electric current along the line of intersection of the channel walls. The walls are porous and subjected to either suction...
-
On Von Karman Equations and the Buckling of a Thin Circular Elastic Plate
PublicationWe shall be concerned with the buckling of a thin circular elastic plate simply supported along a boundary, subjected to a radial compressive load uniformly distributed along its boundary. One of the main engineering concerns is to reduce deformations of plate structures. It is well known that von Karman equations provide an established model that describes nonlinear deformations of elastic plates. Our approach to study plate deformations...
-
Comment on permeability conditions in finite element simulation of bone fracture healing
PublicationThe most popular model of the bone healing considers the fracture callus as poroelastic medium. As such it requires an assumption of the callus’ external permeability. In this work a systematic study of the influence of the permeability of the callus boundary on the simulated bone healing progress is performed. The results show, that these conditions starts to play significant role with the decrease of the callus size. Typically...
-
Fractional problems with advanced arguments
PublicationThis paper concerns boundary fractional differential problems with advanced arguments. We investigate the existence of initial value problems when the initial point is given at the end point of an interval. Nonhomogeneous linear fractional differential equations are also studied. The existence of solutions for fractional differential equations with advanced arguments and with boundary value problems has been investigated by using...
-
Dynamic soil improvement by hybrid technologies
PublicationHybrid method of subsoil improvement for road embankment foundation is described. This method is composed of two wellknown methods: dynamic replacement (DR) and microblasting (DDC) one (Deep Dynamic Compaction). The method was used for both the strengthening of the fully saturated organic subsoil as well as for acceleration of the consolidation of the organic layers. The practice ensures the expected results. A proper example on...
-
Influence of soil anisotropic stiffness on the deformation induced by an open pit excavation.
PublicationIn this paper, the problem of deformation induced by an open pit excavation in anisotropic stiff soils is analysed by FE modelling. The presented research is focused on the influence of material model with anisotropic stiffness on the accuracy of deformation predictions as compared with the field measurements. A new hyperelastic-plastic model is applied to simulate anisotropic mechanical behaviour of stiff soils. It is capable...
-
GPR investigation of the strengthening system of a historic masonry tower
PublicationIn this paper the condition assessment of the strengthening system of a masonry tower was carried out by the GPR method. The study provided unique experimental data acquired during measurements of the reinforced concrete frame embedded in masonry walls. Conducted numerical and experimental investigations were focused on the phenomenon of the diffraction-refraction scattering of the electromagnetic energy. A hyperbola resulting...
-
Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory
PublicationThis paper studies the electro-mechanical shear buckling analysis of piezoelectric nanoplate using modified couple stress theory with various boundary conditions.In order to be taken electric effects into account, an external electric voltage is applied on the piezoelectric nanoplate. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using...
-
Comparison of Traffic Flow Models with Real Traffic Data Based on a Quantitative Assessment
PublicationThe fundamental relationship of traffic flow and bivariate relations between speed and flow, speed and density, and flow and density are of great importance in transportation engineering. Fundamental relationship models may be applied to assess and forecast traffic conditions at uninterrupted traffic flow facilities. The objective of the article was to analyze and compare existing models of the fundamental relationship. To that...
-
An optimal sliding mode control based on immune-wavelet algorithm for underwater robotic manipulator
PublicationIn this paper, a robust optimal Sliding Mode Controller (SMC) based on new algorithm of Artificial Immune System (AIS) is proposed for trajectory tracking of underwater manipulators. A new AIS algorithm is used to derive optimal values of surface parameters and boundary layer thickness in SMC with considering minimum torques and error. Surface parameters and boundary layer thickness are considered as antibody in AIS and Morlet...
-
Numerical simulation of hardening of concrete plate
PublicationThe paper presents a theoretical formulation of concrete curing in order to predict temperature evolution and strength development. The model of heat flow is based on a well-known Fourier equation. The numerical solution is implemented by means of the Finite Difference Method. In order to verify the model, the in situ temperature measurements at the top plate of a road bridge were carried out. A high agreement between numerical...
-
Theoretical examination of the fracture behavior of BC3 polycrystalline nanosheets: Effect of crack size and temperature
Publication2D carbon graphene nanostructures are elements of advanced materials and systems. This theoretical survey provides explanation to the mechanical and fracture behavior of mono- and polycrystalline BC3 nanosheets (denoted as MC- and PCBC3NS, respectively) as a function of temperature and the type of crack defects. The mechanical performance of PCBC3NS at elevated temperatures was monitored varying the number of grain boundaries (the...
-
Significant Production of Thermal Energy in Partially Ionized Hyperbolic Tangent Material Based on Ternary Hybrid Nanomaterials
PublicationNanoparticles are frequently used to enhance the thermal performance of numerous materials. This study has many practical applications for activities that have to minimize losses of energy due to several impacts. This study investigates the inclusion of ternary hybrid nanoparticles in a partially ionized hyperbolic tangent liquid passed over a stretched melting surface. The fluid motion equation is presented by considering the...
-
DISTRIBUTION OF FLOWS IN A CHANNEL NETWORK UNDER STEADY FLOW CONDITIONS
PublicationThe article presents an algorithm for calculating the distribution of flow in a junction of open channel network under steady flow conditions. The article presents a simplified calculation algorithm used to estimate the distribution of flow in a network of channels under steady flow conditions. The presented algorithm is based on the continuity equation and a simplified energy equation. To describe the relationship between the...
-
Application of Game Theory to Conflict Management in a Construction Contract
PublicationInterest has recently grown in the application of game theory (GT) to solve a number of diverse problems in the field of construction. The use of GT by a general contractor (GC) of construction works to indicate the best strategy leading to winning court proceedings in a situation of conflict with investor (IN), has not been investigated until now. Thus the aim of this paper is to indicate the optimal strategy from the GC viewpoint...
-
Method of identification of the slide tribological system top layer condition by assessment of the t-02 four-ball tester friction node operation
Publicationa method is proposed of the assessment of t-02 four-ball tester friction node operation during extreme unit loads on the tribological system for identification of the top layer condition in that system lubricated with the tested lubricating oil. by identification of the friction node with a thermodynamic system, that operation is treated as an energy generating process of the created servo-layer structure. the friction node operation...
-
Quasi-solutions for generalized second order differential equations with deviating arguments
PublicationThis paper deal with boundary value problems for generalized second order differential equations with deviating arguments. Existence of quasi-solutions and solutions are proved by monotone iterative method. Examples with numerical results are added.
-
NUMERICAL SIMULATION OF CRATER CREATING PROCESS IN DYNAMIC REPLACEMENT METHOD BY SMOOTH PARTICLE HYDRODYNAMICS
PublicationA theoretical base of SPH method, including the governing equations, discussion of importance of the smoothing function length, contact formulation, boundary treatment and finally utilization in hydrocode simulations are presented. An application of SPH to a real case of large penetrations (crater creating) into the soil caused by falling mass in Dynamic Replacement Method is discussed. An influence of particles spacing on method...
-
Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method
PublicationIn this paper, bending analysis of rectangular functionally graded (FG) nanoplates under a uniform transverse load has been considered based on the modified couple stress theory. Using Hamilton’s principle, governing equations are derived based on a higher-order shear deformation theory (HSDT). The set of coupled equations are solved using the dynamic relaxation (DR) method combined with finite difference (FD) discretization technique...
-
Rothe’s method for physiologically structured models with diffusion
PublicationWe consider structured population models with diffusion and dynamic boundary conditions. The respective approximation, called Rothe’s method, produces positive and exponentially bounded solutions. Its solutions converge to the exact solution of the original PDE.
-
AN OVERVIEW OF HEAT TRANSFER ENHANCEMENT BASED UPON NANOPARTICLES INFLUENCED BY INDUCED MAGNETIC FIELD WITH SLIP CONDITION VIA FINITE ELEMENT STRATEGY
PublicationThe mathematical model of heat generation and dissipation during thermal energy transmission employing nanoparticles in a Newtonian medium is investigated. Dimensionless boundary layer equations with correlations for titanium dioxide, copper oxide, and aluminium oxide are solved by the finite element method. Parameters are varied to analyze their impact on the flow fields. Various numerical experiments are performed consecutively...
-
Computer-Aided Design of Railroad Horizontal Arc Areas in Adapting to Satellite Measurements
PublicationThis paper presents a method of designing railway sections located in horizontal arcs. The adopted procedure is universal, i.e., it creates the possibility of varying both the type and the length of the assumed transition curves. This means that the applied analytical formulas apply to the boundary conditions of the transition curves and all of the simplifications widely existing in common algorithms have been eliminated. The presented...
-
Infiltration in a double-porosity medium: Experiments and comparison with a theoretical model
PublicationThis paper presents experimental verification of the mathematical model of unsaturated flow in double‐porosity soils developed by the asymptotic homogenization method. A series of one‐dimensional infiltration experiments was carried out in a column filled with a double‐porosity medium composed of a mixture of sand and sintered clayey spheres arranged in a periodic manner. The unsaturated hydraulic properties of each porous material...
-
Structured populations with diffusion and Feller conditions
PublicationWe prove a weak maximum principle for structured population models with dynamic boundary conditions. We establish existence and positivity of solutions of these models and investigate the asymptotic behaviour of solutions. In particular, we analyse so called size profile.
-
Natural convective heat transfer from isothermalconic
PublicationTheoretical considerations on convective heat transfer from isothermal upward conicalsurfaces have been presented. The physical model of this phenomenon consists of an isothermalcone of inclination angle (φ) between the cone generating line (X) and the radius (R) of the cone base. The angle is a parameter of conical surface which varied from (φ = 0−circular horizontal plate) to (φ = π/2—vertical cylinder) . Onthe basis of Navier–Stokes...
-
The Hopf theorem for gradient local vector fields on manifolds
PublicationWe prove the Hopf theorem for gradient local vector fields on manifolds, i.e., we show that there is a natural bijection between the set of gradient otopy classes of gradient local vector fields and the integers if the manifold is connected Riemannian without boundary.
-
Buckling Analysis of a Micro Composite Plate with Nano Coating Based on the Modified Couple Stress Theory
PublicationThe present study investigates the buckling of a thick sandwich plate under the biaxial non-uniform compression using the modified couple stress theory with various boundary conditions. For this purpose, the top and bottom faces are orthotropic graphene sheets and for the central core the isotropic soft materials are investigated. The simplified first order shear deformation theory (S-FSDT) is employed and the governing differential...
-
Modelling tunnelling-induced deformation in stiff soils with a hyperelastic–plastic anisotropic model
PublicationIn this paper, the tunnelling-induced deformation in anisotropic stiff soils is analysed using FE modelling. The influence of material description is investigated rather than an advanced simulation of the tunnelling method. A new hyperelastic– plastic model is proposed to describe the anisotropic mechanical behaviour of stiff highly overconsolidated soil. This model can reproduce the superposition of variable stress-induced anisotropy...
-
Cattaneo–Christov heat flow model for copper–water nanofluid heat transfer under Marangoni convection and slip conditions
PublicationThis report is devoted to the study of the flow of MHD nanofluids through a vertical porous plate with a temperature-dependent surface tension using the Cattaneo–Christov heat flow model. The energy equation was formulated using the Cattaneo–Christov heat flux model instead of Fourier’s law of heat conduction. The Tiwari–Das model was used to take into account the concentration of nanoparticles when constructing the momentum equation....
-
Influence of the air phase on water flow in dikes
PublicationNumerical models are often used to describe flow and deformation processes occurring in dikes during flood events. Modeling of such phenomena is a challenging task, due to the complexity of the system, consisting of three material phases: soil skeleton, pore water and pore air. Additional difficulties are transient loading caused by variable in time water levels, heterogeneity of the soil or air...
-
Numerical single-phase modeling of turbulent flow and heat transfer of nanofluids
PublicationIn this work, Nusselt number and friction factor are calculated numerically for turbulent pipe flow (6 000< Re < 12 000) with constant heat flux boundary condition using nanofluids. The nanofluid is modelled with the single-phase approach and the simulation results are compared with published experimental data.
-
Thermal Buckling Analysis of Circular Bilayer Graphene sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics
PublicationIn this article, the thermal buckling behavior of orthotropic circular bilayer graphene sheets embedded in the Winkler–Pasternak elastic medium is scrutinized. Using the nonlocal elasticity theory, the bilayer graphene sheets are modeled as a nonlocal double–layered plate that contains small scale effects and van der Waals (vdW) interaction forces. The vdW interaction forces between the layers are simulated as a set of linear springs...
-
On instabilities and post-buckling of piezomagnetic and flexomagnetic nanostructures
PublicationWe focus on the mechanical strength of piezomagnetic beam-like nanosize sensors during post-buckling. An effective flexomagnetic property is also taken into account. The modelled sensor is selected to be a Euler-Bernoulli type beam. Long-range interactions between atoms result in a mathematical model based on the nonlocal strain gradient elasticity approach (NSGT). Due to possible large deformations within a post-buckling phenomenon,...
-
Temperature influences on shear stability of a nanosize plate with piezoelectricity effect
PublicationPurpose The purpose of this paper is to predict the mechanical behavior of a piezoelectric nanoplate under shear stability by taking electric voltage into account in thermal environment. Design/methodology/approach Simplified first-order shear deformation theory has been used as a displacement field. Modified couple stress theory has been applied for considering small-size effects. An analytical solution has been taken into account...
-
Bifurcation in von Karman problem for rectangular, thin, elastic plate resting on elastic foundation of Winkler type
PublicationPraca poświęcona jest utracie stateczności prostokątnej, cienkiej płyty sprężystej spoczywającej na podłożu liniowo sprężystym typu Winklera. Płyta jest ściskana równomiernie rozłożonymi obciążeniami na dwóch równoległych brzegach. Wyznaczono obciążenia krytyczne, formy utraty stateczności płyty oraz początkowe zachowanie pokrytyczne. Analizę prowadzono za pomocą analizy funkcjonalnej przy zachowaniu precyzyjnego matematycznego...
-
Improving the accuracy of subgridding scheme in finite differences method based on Legendre polynomials expansion
PublicationIn this article the Legendre polynomials have been used to interpolate the field at the boundary of the meshes of different densities. The numerical verification of the proposed technique has been carried out in frequency domain. It has been shown that the accuracy of the presented method is very high and stable - the error monotonically decreases as a function of the refinement factor.
-
Difference functional inequalities and applications.
PublicationThe paper deals with the difference inequalities generated by initial boundary value problems for hyperbolic nonlinear differential functional systems. We apply this result to investigate the stability of constructed difference schemes. The proof of the convergence of the difference method is based on the comparison technique, and the result for difference functional inequalities is used. Numerical examples are presented.
-
Analysis of ship's magnetic field with consideration of inner ferromagnetic devices
PublicationThis paper presents computer simulations of ship’s magnetic signatures. The influence of ship’s inner ferromagnetic devices on the signature was presented. The magnetic fields of the ship’s model were calculated in Opera 3D 18R2. The model was built from thin plates. The new, thin plate boundary condition was introduced on all ship’s surfaces.
-
An isogeometric finite element formulation for frictionless contact of Cosserat rods with unconstrained directors
PublicationThis paper presents an isogeometric finite element formulation for nonlinear beams with impenetrability constraints, based on the kinematics of Cosserat rods with unconstrained directors. The beam cross-sectional deformation is represented by director vectors of an arbitrary order. For the frictionless lateral beam-to-beam contact, a surface-to-surface contact algorithm combined with an active set strategy and a penalty method...
-
Analytical predictions for the buckling of a nanoplate subjected to non-uniform compression based on the four-variable plate theory
PublicationIn the present study, the buckling analysis of the rectangular nanoplate under biaxial non-uniform compression using the modified couple stress continuum theory with various boundary conditions has been considered. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using the Hamilton’s principle. An analytical approach has been applied to obtain...
-
Transient response of oscillated carbon nanotubes with an internal and external damping
PublicationThe present works aims at modeling a viscoelastic nanobeam with simple boundary conditions at the two ends with the introduction of the Kelvin-Voigt viscoelasticity in a nonlocal strain gradient theory. The nanobeam lies on the visco-Pasternak matrix in which three characteristic parameters have a prominent role. A refined Timoshenko beam theory is here applied, which is only based on one unknown variable, in accordance with the...
-
Comparison of strain results at a laser weld notch obtained by numerical calculations and experimental measurements
PublicationIn the development of ship structures applying new materials and it’s purposeful placement play an important role. During the last years, especially in a construction of ro-ro type vessels, the usage of novel sandwich structures in cargo decks is profitable. Steel sandwich panel is an innovative solution which at a todays state of development can be used for the construction of any members not taking part in a global bending of...
-
An asymmetrical λ-foot of condensing steam flow in the IMP PAN nozzle
PublicationIn the present paper we have focused on the precise prediction of the spontaneous condensation phenomena in wet steam flow. Novelty of our approach lies on modelling both the moment of initiation of a phase transition, as well as the moment of its reverse progress - called here re-vaporization of the condensate phase. The practical issue is to elaborate of a model of spontaneous condensation/vaporization of water steam flow...
-
Deformation of an elastic second gradient spherical body under equatorial line density of dead forces
PublicationWe consider deformations of an elastic body having initially a spherical shape. Assumed deformation energy depends on the first and second gradient of displacements. We apply an equatorial line density of dead loads, that are forces per unit line length directed in radial direction and applied along the equator of the sphere. We restrict ourselves our analysis to the case of linearized second strain gradient isotropic elasticity...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublicationW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wyko-rzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...