Search results for: GRAPH NEURAL NETWORK COLLABORATIVE FILTERING - Bridge of Knowledge

Search

Search results for: GRAPH NEURAL NETWORK COLLABORATIVE FILTERING

Filters

total: 470
filtered: 407

clear all filters


Chosen catalog filters

  • Category

  • Year

  • Options

clear Chosen catalog filters disabled

Search results for: GRAPH NEURAL NETWORK COLLABORATIVE FILTERING

  • Ship Resistance Prediction with Artificial Neural Networks

    Publication

    - Year 2015

    The paper is dedicated to a new method of ship’s resistance prediction using Artificial Neural Network (ANN). In the initial stage selected ships parameters are prepared to be used as a training and validation sets. Next step is to verify several network structures and to determine parameters with the highest influence on the result resistance. Finally, other parameters expected to impact the resistance are proposed. The research utilizes...

    Full text available to download

  • A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification

    Publication

    The article concerns the automation of vessel movement anomaly detection for maritime and coastal traffic safety services. Deep Learning techniques, specifically Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the form of a grayscale image, were generated. 1458 convolutional neural networks with...

    Full text available to download

  • Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks

    Publication

    The presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods....

    Full text available to download

  • Network Approach to Increments of RR-intervals for Visualization of Dynamics of Cardiac Regulation

    Publication

    - Year 2014

    The transition network for RR -increments is pre- sented in a directed and weighted graph, with vertices represent- ing RR -increments and edges corresponding to the order in a sequence of increments. The adjacency matrix and the transition matrix of this network provide a graphical tool which could be useful in the assessment of cardiac regulation. As an example, the method is applied in detecting differences between diurnal activity...

    Full text to download in external service

  • Extending touch-less interaction with smart glasses by implementing EMG module

    In this paper we propose to use temporal muscle contraction to perform certain actions. Method: The set of muscle contractions corresponding to one of three actions including “single-click”, “double-click” “click-n-hold” and “non-action” were recorded. After recording certain amount of signals, the set of five parameters was calculated. These parameters served as an input matrix for the neural network. Two-layer feedforward neural...

    Full text to download in external service

  • Efficiency of Artificial Intelligence Methods for Hearing Loss Type Classification: an Evaluation

    Publication
    • M. Kassjański
    • M. Kulawiak
    • T. Przewoźny
    • D. Tretiakow
    • J. Kuryłowicz
    • A. Molisz
    • K. Koźmiński
    • A. Kwaśniewska
    • P. Mierzwińska-Dolny
    • M. Grono

    - Journal of Automation, Mobile Robotics and Intelligent Systems - JAMRIS - Year 2024

    The evaluation of hearing loss is primarily conducted by pure tone audiometry testing, which is often regarded as golden standard for assessing auditory function. If the presence of hearing loss is determined, it is possible to differentiate between three types of hearing loss: sensorineural, conductive, and mixed. This study presents a comprehensive comparison of a variety of AI classification models, performed on 4007 pure tone...

    Full text to download in external service

  • Supply current signal and artificial neural networks in the induction motor bearings diagnostics

    Publication

    This paper contains research results of the diagnostics of induction motor bearings based on measurement of the supply current with usage of artificial neural networks. Bearing failure amount is greater than 40% of all engine failures, which makes their damage-free operation crucial. Tests were performed on motors with intentionally made bearings defects. Chapter 2 introduces the concept of artificial neural networks. It presents...

  • Minimizing Distribution and Data Loading Overheads in Parallel Training of DNN Acoustic Models with Frequent Parameter Averaging

    Publication

    In the paper we investigate the performance of parallel deep neural network training with parameter averaging for acoustic modeling in Kaldi, a popular automatic speech recognition toolkit. We describe experiments based on training a recurrent neural network with 4 layers of 800 LSTM hidden states on a 100-hour corpora of annotated Polish speech data. We propose a MPI-based modification of the training program which minimizes the...

    Full text to download in external service

  • Neural Architecture Search for Skin Lesion Classification

    Deep neural networks have achieved great success in many domains. However, successful deployment of such systems is determined by proper manual selection of the neural architecture. This is a tedious and time-consuming process that requires expert knowledge. Different tasks need very different architectures to obtain satisfactory results. The group of methods called the neural architecture search (NAS) helps to find effective architecture...

    Full text available to download

  • Ionospheric scintillations computation using real-time GPS observations

    The following paper presents the results of quasi-real-time determination of the values of phase scintillations indices at the period of ionospheric disturbances that occurred as a consequence of the Sun flares observed on March 7 and 9, 2012. Double-frequency observations with 1-second measurement interval from the EPN (EUREF Permanent Network) network sites located at high latitudes were used for the analysis. To determine the phase...

    Full text available to download

  • INFLUENCE OF DATA NORMALIZATION ON THE EFFECTIVENESS OF NEURAL NETWORKS APPLIED TO CLASSIFICATION OF PAVEMENT CONDITIONS – CASE STUDY

    In recent years automatic classification employing machine learning seems to be in high demand for tele-informatic-based solutions. An example of such solutions are intelligent transportation systems (ITS), in which various factors are taken into account. The subject of the study presented is the impact of data pre-processing and normalization on the accuracy and training effectiveness of artificial neural networks in the case...

  • Listening to Live Music: Life beyond Music Recommendation Systems

    Publication

    - Year 2018

    This paper presents first a short review on music recommendation systems based on social collaborative filtering. A dictionary of terms related to music recommendation systems, such as music information retrieval (MIR), Query-by-Example (QBE), Query-by-Category (QBC), music content, music annotating, music tagging, bridging the semantic gap in music domain, etc. is introduced. Bases of music recommender systems are shortly presented,...

    Full text to download in external service

  • Neural networks and deep learning

    Publication

    - Year 2022

    In this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings...

    Full text to download in external service

  • Blood Pressure Estimation Based on Blood Flow, ECG and Respiratory Signals Using Recurrent Neural Networks

    Publication

    The estimation of systolic and diastolic blood pressure using artificial neural network is considered in the paper. The blood pressure values are estimated using pulse arrival time, and additionally RR intervals of ECG signal together with respiration signal. A single layer recurrent neural network with hyperbolic tangent activation function was used. The average blood pressure estimation error for the data obtained from 21 subjects...

    Full text to download in external service

  • Potential and Use of the Googlenet Ann for the Purposes of Inland Water Ships Classification

    Publication

    - Polish Maritime Research - Year 2020

    This article presents an analysis of the possibilities of using the pre-degraded GoogLeNet artificial neural network to classify inland vessels. Inland water authorities monitor the intensity of the vessels via CCTV. Such classification seems to be an improvement in their statutory tasks. The automatic classification of the inland vessels from video recording is a one of the main objectives of the Automatic Ship Recognition and...

    Full text available to download

  • Analysis of 2D Feature Spaces for Deep Learning-based Speech Recognition

    Publication

    - JOURNAL OF THE AUDIO ENGINEERING SOCIETY - Year 2018

    convolutional neural network (CNN) which is a class of deep, feed-forward artificial neural network. We decided to analyze audio signal feature maps, namely spectrograms, linear and Mel-scale cepstrograms, and chromagrams. The choice was made upon the fact that CNN performs well in 2D data-oriented processing contexts. Feature maps were employed in the Lithuanian word recognition task. The spectral analysis led to the highest word...

  • Optimized Deep Learning Model for Flood Detection Using Satellite Images

    Publication
    • A. Stateczny
    • H. D. Praveena
    • R. H. Krishnappa
    • K. R. Chythanya
    • B. B. Babysarojam

    - Remote Sensing - Year 2023

    The increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...

    Full text available to download

  • Hybrid System for Ship-Aided Design Automation

    Publication

    - Year 2011

    A hybrid support system for ship design based on the methodology of CBR with some artificial intelligence tools such as expert system Exsys Developer along with fuzzy logic, relational Access database and artificial neural network with backward propagation of errors.

    Full text to download in external service

  • Self-Supervised Learning to Increase the Performance of Skin Lesion Classification

    To successfully train a deep neural network, a large amount of human-labeled data is required. Unfortunately, in many areas, collecting and labeling data is a difficult and tedious task. Several ways have been developed to mitigate the problem associated with the shortage of data, the most common of which is transfer learning. However, in many cases, the use of transfer learning as the only remedy is insufficient. In this study,...

    Full text available to download

  • Spatio-temporal filtering for determination of common mode error in regional GNSS networks

    Publication

    - Central European Journal of Geosciences - Year 2015

    The spatial correlation between different stations for individual components in the regional GNSS networks seems to be significant. The mismodelling in satellite orbits, the Earth orientation parameters (EOP), largescale atmospheric effects or satellite antenna phase centre corrections can all cause the regionally correlated errors. This kind of GPS time series errors are referred to as common mode errors (CMEs). They are usually...

    Full text available to download

  • Hybrid of Neural Networks and Hidden Markov Models as a modern approach to speech recognition systems

    The aim of this paper is to present a hybrid algorithm that combines the advantages ofartificial neural networks and hidden Markov models in speech recognition for control purpos-es. The scope of the paper includes review of currently used solutions, description and analysis of implementation of selected artificial neural network (NN) structures and hidden Markov mod-els (HMM). The main part of the paper consists of a description...

    Full text available to download

  • Deep neural networks for human pose estimation from a very low resolution depth image

    Publication

    The work presented in the paper is dedicated to determining and evaluating the most efficient neural network architecture applied as a multiple regression network localizing human body joints in 3D space based on a single low resolution depth image. The main challenge was to deal with a noisy and coarse representation of the human body, as observed by a depth sensor from a large distance, and to achieve high localization precision....

    Full text available to download

  • Selected Technical Issues of Deep Neural Networks for Image Classification Purposes

    In recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...

    Full text available to download

  • Decontaminating Arbitrary Graphs by Mobile Agents: a Survey

    Publication

    A team of mobile agents starting from homebases need to visit and clean all nodes of the network. The goal is to find a strategy, which would be optimal in the sense of the number of needed entities, the number of moves performed by them or the completion time of the strategy. Currently, the field of distributed graph searching by a team of mobile agents is rapidly expanding and many new approaches and models are being presented...

    Full text to download in external service

  • On Symmetry of Uniform and Preferential Attachment Graphs

    Publication

    - ELECTRONIC JOURNAL OF COMBINATORICS - Year 2014

    Motivated by the problem of graph structure compression under realistic source models, we study the symmetry behavior of preferential and uniform attachment graphs. These are two dynamic models of network growth in which new nodes attach to a constant number m of existing ones according to some attachment scheme. We prove symmetry results for m=1 and 2 , and we conjecture that for m≥3 , both models yield asymmetry with high...

    Full text available to download

  • Deep Learning Optimization for Edge Devices: Analysis of Training Quantization Parameters

    Publication

    - Year 2019

    This paper focuses on convolution neural network quantization problem. The quantization has a distinct stage of data conversion from floating-point into integer-point numbers. In general, the process of quantization is associated with the reduction of the matrix dimension via limited precision of the numbers. However, the training and inference stages of deep learning neural network are limited by the space of the memory and a...

    Full text available to download

  • Application of the neural networks for developing new parametrization of the Tersoff potential for carbon

    Publication

    - TASK Quarterly - Year 2020

    Penta-graphene (PG) is a 2D carbon allotrope composed of a layer of pentagons having sp2- and sp3-bonded carbon atoms. A study carried out in 2018 has shown that the parameterization of the Tersoff potential proposed in 2005 by Ehrhart and Able (T05 potential) performs better than other potentials available for carbon, being able to reproduce structural and mechanical properties of the PG. In this work, we tried to improve the...

    Full text available to download

  • Computational intelligence methods in production management

    Publication

    - Year 2010

    This chapter presents a survey of selected computational intelligence methods used in production management. This group of methods includes, among others, approaches based on the artificial neural networks, the evolutionary algorithms, the fuzzy logic systems and the particle swarm optimization mechanisms. From the abovementioned methods particularly noteworthy are the evolutionary and the particle swarm algorithms, which are successfully...

  • Topology Discovery of Hierarchical Ethernet LANs without SNMP support

    Publication

    - Year 2015

    This paper presents an algorithm that allows for discovery of layer-2 hierarchical Ethernet network topology using agents running on selected end nodes. No SNMP, MIB, hardware, firmware, or operating system-level software modification is required. The method is based on transmission of customized Ethernet frames among installed software agents. It can be used to discover the topology of LAN or one VLAN segment as long as no MAC...

  • The role of EMG module in hybrid interface of prosthetic arm

    Nearly 10% of all upper limb amputations concern the whole arm. It affects the mobility and reduces the productivity of such a person. These two factors can be restored by using prosthetics. However, the complexity of human arm makes restoring its basic functions quite difficult. When the osseointegration and/or targeted muscle reinnervation (TMR) are not possible, different modalities can be used to control the prosthesis. In...

    Full text to download in external service

  • Pawlak's flow graph extensions for video surveillance systems

    Publication

    The idea of the Pawlak's flow graphs is applicable to many problems in various fields related to decision algorithms or data mining. The flow graphs can be used also in the video surveillance systems. Especially in distributed multi-camera systems which are problematic to be handled by human operators because of their limited perception. In such systems automated video analysis needs to be implemented. Important part of this analysis...

    Full text to download in external service

  • Artificial Neural Networks as an architectural design tool- generating new detail forms based on the Roman Corinthian order capital

    The following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital....

    Full text available to download

  • Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition

    Publication

    - Gazi University Journal of Science - Year 2022

    Predictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn’t only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural...

    Full text to download in external service

  • An ANN-Based Method for On-Load Tap Changer Control in LV Networks with a Large Share of Photovoltaics—Comparative Analysis

    Publication

    - ENERGIES - Year 2024

    The paper proposes a new local method of controlling the on-load tap changer (OLTC) of a transformer to mitigate negative voltage phenomena in low-voltage (LV) networks with a high penetration of photovoltaic (PV) installations. The essence of the method is the use of the load compensation (LC) function with settings determined via artificial neural network (ANN) algorithms. The proposed method was compared with other selected...

    Full text to download in external service

  • A MODEL FOR FORECASTING PM10 LEVELS WITH THE USE OF ARTIFICIAL NEURAL NETWORKS

    Publication

    - Year 2014

    This work presents a method of forecasting the level of PM10 with the use of artificial neural networks. Current level of particulate matter and meteorological data was taken into account in the construction of the model (checked the correlation of each variable and the future level of PM10), and unidirectional networks were used to implement it due to their ease of learning. Then, the configuration of the network (built on the...

    Full text available to download

  • Characterizing the Scalability of Graph Convolutional Networks on Intel® PIUMA

    Publication
    • M. J. Adiletta
    • J. J. Tithi
    • E. Farsarakis
    • G. Gerogiannis
    • R. Adolf
    • R. Benke
    • S. Kashyap
    • S. Hsia
    • K. Lakhotia
    • F. Petrini... and 2 others

    - Year 2023

    Large-scale Graph Convolutional Network (GCN) inference on traditional CPU/GPU systems is challenging due to a large memory footprint, sparse computational patterns, and irregular memory accesses with poor locality. Intel’s Programmable Integrated Unffied Memory Architecture (PIUMA) is designed to address these challenges for graph analytics. In this paper, a detailed characterization of GCNs is presented using the Open-Graph Benchmark...

    Full text to download in external service

  • Analysis of Denoising Autoencoder Properties Through Misspelling Correction Task

    Publication

    The paper analyzes some properties of denoising autoencoders using the problem of misspellings correction as an exemplary task. We evaluate the capacity of the network in its classical feed-forward form. We also propose a modification to the output layer of the net, which we called multi-softmax. Experiments show that the model trained with this output layer outperforms traditional network both in learning time and accuracy. We...

    Full text available to download

  • Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych

    W artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wykorzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...

    Full text available to download

  • Survival time prognosis under a Markov model of cancer development

    Publication

    - Year 2010

    In this study we look at a breast cancer data set of women from Pomerania region collected in year 1987-1992 in the Medical University of Gdańsk. We analyze the clinical risk factors in conjunction with Markov model of cancer development. We evaluate Artificial Neural Network (ANN) survival time prediction via a simulation study.

  • The Use of an Autoencoder in the Problem of Shepherding

    Publication

    This paper refers to the problem of shepherding clusters of passive agents consisting of a large number of objects by a team of active agents. The problem of shepherding and the difficulties that arise with the increasing number of data describing the location of agents have been described. Several methods for reducing the dimensionality of data are presented. Selected autoencoding method using a Restricted Boltzmann Machine is...

    Full text available to download

  • A city is not a tree: a multi-city study on street network and urban life

    Publication

    Christopher Alexander, a British-American scholar, differentiated an old (natural) city from a new (planned) one by structure. The former resembles a “semilattice”, or a complex system encompassing many interconnected sub-systems. The latter is shaped in a graph-theoretical “tree”, which lacks the structural complexity as its sub-systems are compartmentalized into a single hierarchy. This structural distinction explains why, or...

    Full text available to download

  • Heavy duty vehicle fuel consumption modelling using artificial neural networks

    Publication

    - Year 2019

    In this paper an artificial neural network (ANN) approach to modelling fuel consumption of heavy duty vehicles is presented. The proposed method uses easy accessible data collected via CAN bus of the truck. As a benchmark a conventional method, which is based on polynomial regression model, is used. The fuel consumption is measured in two different tests, performed by using a unique test bench to apply the load to the engine. Firstly,...

    Full text available to download

  • Pose classification in the gesture recognition using the linear optical sensor

    Publication

    Gesture sensors for mobile devices, which have a capability of distinguishing hand poses, require efficient and accurate classifiers in order to recognize gestures based on the sequences of primitives. Two methods of poses recognition for the optical linear sensor were proposed and validated. The Gaussian distribution fitting and Artificial Neural Network based methods represent two kinds of classification approaches. Three types...

    Full text to download in external service

  • Musical Instrument Identification Using Deep Learning Approach

    Publication

    - SENSORS - Year 2022

    The work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata...

    Full text available to download

  • Video of LEGO Bricks on Conveyor Belt Dataset Series

    Publication

    - Year 2022

    The dataset series titled Video of LEGO bricks on conveyor belt is composed of 14 datasets containing video recordings of a moving white conveyor belt. The recordings were created using a smartphone camera in Full HD resolution. The dataset allows for the preparation of data for neural network training, and building of a LEGO sorting machine that can help builders to organise their collections.

    Full text available to download

  • Classifying Emotions in Film Music - A Deep Learning Approach

    The paper presents an application for automatically classifying emotions in film music. A model of emotions is proposed, which is also associated with colors. The model created has nine emotional states, to which colors are assigned according to the color theory in film. Subjective tests are carried out to check the correctness of the assumptions behind the adopted emotion model. For that purpose, a statistical analysis of the...

    Full text available to download

  • Adding Interpretability to Neural Knowledge DNA

    Publication

    - CYBERNETICS AND SYSTEMS - Year 2022

    This paper proposes a novel approach that adds the interpretability to Neural Knowledge DNA (NK-DNA) via generating a decision tree. The NK-DNA is a promising knowledge representation approach for acquiring, storing, sharing, and reusing knowledge among machines and computing systems. We introduce the decision tree-based generative method for knowledge extraction and representation to make the NK-DNA more explainable. We examine...

    Full text available to download

  • Developing a Low SNR Resistant, Text Independent Speaker Recognition System for Intercom Solutions - A Case Study

    Publication

    This article presents a case study on the development of a biometric voice verification system for an intercom solution, utilizing the DeepSpeaker neural network architecture. Despite the variety of solutions available in the literature, there is a noted lack of evaluations for "text-independent" systems under real conditions and with varying distances between the speaker and the microphone. This article aims to bridge this gap....

    Full text available to download

  • Influence of accelerometer signal pre-processing and classification method on human activity recognition

    A study of data pre-processing influence on accelerometer-based human activity recognition algorithms is presented. The frequency band used to filter-out the accelerometer signals and the number of accelerometers involved were considered in terms of their influence on the recognition accuracy. In the test four methods of classification were used: support vector machine, decision trees, neural network, k-nearest neighbor.

    Full text to download in external service

  • Multifunctional PID Neuro-Controller for Synchronous Generator

    This paper deals with a PID Neuro-Controller (PIDNC) for synchronous generator system. The controller is based on artificial neural network and adaptive control strategy. It ensures two functions: maintaining the generator voltage at its desired value and damping electromechanical oscillations. The performance of the proposed controller is evaluated on the basis of simulation tests. A comparative study of the results obtained with...

    Full text available to download