Filters
total: 353
filtered: 319
Search results for: TRF1, TRF2, TRFH DOMAIN, TIN2, PEPTIDE, MOLECULAR DYNAMICS
-
Smart acoustic band structures
PublicationSmart acoustic band structures exhibit very interesting and non-standard physical properties due to the periodic nature of their certain characteristic on different scale levels. They manifest mostly in their frequency spectra as socalled frequency band-gaps or stop-bands, what has a great impact on the behaviour of these structures in relation to the propagation of vibro-acoustic signals that can be transmitted through the structures...
-
In silico assessment and sonochemical synthesis of 2-alkynyl 3-chloropyrazines as prospective ligands for SARS-CoV-2
PublicationThe recent global pandemic caused by COVID-19 has triggered an intense effort worldwide towards the development of an effective cure for this disease. In our effort we have explored the 2-alkynyl substituted 3-chloropyrazine framework as a potential template for the design of molecules for this purpose. Our strategy was supported by the in silico studies of representative compounds to assess their binding affinities via docking...
-
Low-Barrier Hydrogen Bond Determines Target-Binding Affinity and Specificity of the Antitubercular Drug Bedaquiline
PublicationThe role of short strong hydrogen bonds (SSHB) in ligand-target binding remains largely unexplored, thereby hin- dering a potentially important avenue in the rational drug de- sign. Here, we investigate the interaction between bedaquiline (Bq), a potent anti-tuberculosis drug, and the mycobacterial ATP synthase, to unravel the role of a specific hydrogen bond to a conserved acidic residue in the target affinity and specificity....
-
Hybrid quantum-classical approach for atomistic simulation of metallic systems
PublicationThe learn-on-the-fly (LOTF) method [G. Csanyi et al., Phys. Rev. Lett. 93, 175503 (2004)] serves to seamlessly embed quantum-mechanical computations within a molecular-dynamics framework by continual local retuning of the potential's parameters so that it reproduces the quantum-mechanical forces. In its current formulation, it is suitable for systems where the interaction is short-ranged, such as covalently bonded semiconductors....
-
Role of cholesterol in substrate recognition by -secretase
Publication-Secretase is an enzyme known to cleave multiple substrates within their transmembrane domains, with the amyloid precursor protein of Alzheimer’s Disease among the most prominent examples. The activity of -secretase strictly depends on the membrane cholesterol content, yet the mechanistic role of cholesterol in the substrate binding and cleavage remains unclear. In this work, we used all-atom molecular dynamics simulations to examine...
-
The influence of intermolecular correlations on the infrared spectrum of liquid dimethyl sulfoxide
PublicationDimethyl sulfoxide (DMSO) is routinely applied as an excellent, water-miscible solvent and chemical reagent. Some of the most important data concerning its liquid structure were obtained using infrared (IR) spectroscopy. However, the actual extent of intermolecular correlations that connect the isolated monomer spectrum to the IR response of the bulk liquid is poorly studied thus far. Using ab initio molecular dynamics (AIMD) simulations,...
-
Theoretical studies of fragmentation processes of neutral and ionized furan molecule
PublicationThis PhD thesis focuses on the fragmentation mechanism of the furan molecule in the gas phase. The approach taken in this work comprised of three theoretical methodologies considering the dynamical, energetical and entropic aspects of the studied process. First, molecular dynamics simulations were performed. Next, the potential energy surfaces were explored at the DFT/B3LYP level of theory. Finally, a new statistical Microcanonical...
-
Optimization of parallel implementation of UNRES package for coarse‐grained simulations to treat large proteins
PublicationWe report major algorithmic improvements of the UNRES package for physics-based coarse-grained simulations of proteins. These include (i) introduction of interaction lists to optimize computations, (ii) transforming the inertia matrix to a pentadiagonal form to reduce computing and memory requirements, (iii) removing explicit angles and dihedral angles from energy expressions and recoding the most time-consuming energy/force terms...
-
Thermophysical study of the binary mixtures of triethyl phosphate with N-methylformamide, N,N-dimethylformamide and N,N-dimethylacetamide – Experimental and theoretical approach
PublicationDensities at (293.15, 298.15, 303.15 and 308.15) K, and viscosities and ultrasonic velocities at 298.15 K of binary liquid mixtures of triethyl phosphate with N-methylformamide, N,N-dimethylformamide and N,N-dimethylacetamide have been measured over the entire range of composition at p = 0.1 MPa. From the experimental data, values of excess molar volume, excess isentropic compressibility, viscosity deviation and excess Gibbs energy...
-
Unveiling the electron-induced ionization cross sections and fragmentation mechanisms of 3,4-dihydro-2H-pyran
PublicationThe interactions of electrons with molecular systems under various conditions are essential to interdisciplinary research fields extending over the fundamental and applied sciences. In particular, investigating electron-induced ionization and dissociation of molecules may shed light on the radiation damage to living cells, the physicochemical processes in interstellar environments, and reaction mechanisms occurring in combustion...
-
The ONETEP linear-scaling density functional theory program
PublicationWe present an overview of the ONETEP program for linear-scaling density functional theory (DFT) calculations with large basis set (planewave) accuracy on parallel computers. The DFT energy is computed from the density matrix, which is constructed from spatially localized orbitals we call Non-orthogonal Generalized Wannier Functions (NGWFs), expressed in terms of periodic sinc (psinc) functions. During the calculation, both the...
-
MODELOWANIE TURBINY WIATROWEJ Z DWOMA PRZECIWBIEŻNIE OBRACAJĄCYMI SIĘ WIRNIKAMI
PublicationW artykule przedstawiono sposoby modelowania dwuwirnikowej turbiny wiatrowej z wykorzystaniem technik Obliczeniowej Mechaniki Płynów. Omówiono uproszczone metody modelowania Actuator Disc i Actuator Line Method oraz aspekty związane z dokładnym odwzorowaniem turbiny na siatce obliczeniowej. Zaprezentowano przykładowe wyniki obliczeń turbiny dwuwirnikowej złożonej z wirników NREL o mocy nominalnej 5 MW każdy. Do wykonania badań...
-
Dual-Activity Fluoroquinolone-Transportan 10 Conjugates offer alternative Leukemia therapy during Hematopoietic Cell Transplantation
PublicationHematopoietic cell transplantation (HCT) is often considered a last resort leukemia treatment, fraught with limited success due to microbial infections, a leading cause of mortality in leukemia patients. To address this critical issue, we explored a novel approach by synthesizing antileukemic agents containing antibacterial substances. This innovative strategy involves conjugating fluoroquinolone antibiotics, such as ciprofloxacin...
-
Parametric Study on a Performance of a Small Counter-Rotating Wind Turbine
PublicationA small Counter-Rotating Wind Turbine (CRWT) has been proposed and its performancehas been investigated numerically. Results of a parametric study have been presented in this paper.As parameters, the axial distance between rotors and a tip speed ratio of each rotor have been selected.Performance parameters have been compared with reference to a Single Rotor Wind Turbine (SRWT).Simulations were carried out with Computational Fluids...
-
ESCASA : Analytical estimation of atomic coordinates from coarse‐grained geometry for nuclear‐magnetic‐resonance ‐assisted protein structure modeling. I. Backbone and Hβ protons
PublicationA method for the estimation of coordinates of atoms in proteins from coarse-grained geometry by simple analytical formulas (ESCASA), for use in nuclear-magnetic-resonance (NMR) data-assisted coarse-grained simulations of proteins is proposed. In this paper, the formulas for the backbone Hα and amide (HN) protons, and the side-chain Hβ protons, given the Cα-trace, have been derived and parameterized, by using the interproton distances...
-
Closer look into the structures of tetrabutylammonium bromide–glycerol-based deep eutectic solvents and their mixtures with water
PublicationIn recent years, deep eutectic solvents (DES) and it’s mixture with water have become more and more attention as green solvents used in chemistry. However, there are only a few theoretical studies on the mechanisms of pure DES and DES-water complex formation. Therefore, the structural properties of tetrabutylammonium bromide–glycerol-based deep eutectic solvents and their mixtures with water have been investigated by means of Molecular...
-
Guanosine Dianions Hydrated by One to Four Water Molecules
PublicationIntermolecular interactions such as those present in molecule···water complexes may profoundly influence the physicochemical properties of molecules. Here, we carried out an experimental–computational study on doubly deprotonated guanosine monophosphate···water clusters, [dGMP – 2H]2–·nH2O (n = 1–4), using a combination of negative anion photoelectron spectroscopy (NIPES) with molecular dynamics (MD) and quantum chemical (QM) calculations....
-
Utilizing pulse dynamics for non-invasive Raman spectroscopy of blood analytes
PublicationNon-invasive measurement methods offer great benefits in the field of medical diagnostics with molecular-specific techniques such as Raman spectroscopy which is increasingly being used for quantitative measurements of tissue biochemistry in vivo. However, some important challenges still remain for label-free optical spectroscopy to be incorporated into the clinical laboratory for routine testing. In particular, non-analyte-specific...
-
Entropy Measures in the Assessment of Heart Rate Variability in Patients with Cardiodepressive Vasovagal Syncope
PublicationSample entropy (SampEn) was reported to be useful in the assessment of the complexity of heart rate dynamics. Permutation entropy (PermEn) is a new measure based on the concept of order and was previously shown to be accurate for short, non-stationary datasets. The aim of the present study is to assess if SampEn and PermEn obtained from baseline recordings might differentiate patients with various outcomes of the head-up tilt test...
-
Membrane Sterols Modulate the Binding Mode of Amphotericin B without Affecting Its Affinity for a Lipid Bilayer
PublicationMembrane-active antibiotics are known to selectively target certain pathogens based on cell membrane properties, such as fluidity, lipid ordering, and phase behavior. These are in turn modulated by the composition of a lipid bilayer and in particular by the presence and type of membrane sterols. Amphotericin B (AmB), the golden standard of antifungal treatment, exhibits higher activity toward ergosterol-rich fungal membranes, which...
-
Performance of electrochemical immunoassays for clinical diagnostics of SARS-CoV-2 based on selective nucleocapsid N protein detection: Boron-doped diamond, gold and glassy carbon evaluation
PublicationThe 21st century has already brought us a plethora of new threats related to viruses that emerge in humans after zoonotic transmission or drastically change their geographic distribution or prevalence. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first spotted at the end of 2019 to rapidly spread in southwest Asia and later cause a global pandemic, which paralyzes the world since then. We have designed novel...
-
Molecular hydrogen solvated in water – A computational study
PublicationThe aqueous hydrogen molecule is studied with molecular dynamics simulations at ambient temperature and pressure conditions, using a newly developed flexible and polarizable H2 molecule model. The design and implementation of this model, compatible with an existing flexible and polarizable force field for water, is presented in detail. The structure of the hydration layer suggests that first-shell water molecules accommodate the...
-
Computational Study of Molecular Interactions in ZnCl2(urea)2 Crystals as Precursors for Deep Eutectic Solvents
PublicationDeep eutectic solvents (DESs) are now enjoying an increased scientific interest due to their interesting properties and growing range of possible applications. Computational methods are at the forefront of deciphering their structure and dynamics. Type IV DESs, composed of metal chloride and a hydrogen bond donor, are among the less studied systems when it comes to their understanding at a molecular level. An important example...
-
Telomere uncapping by common oxidative guanine lesions: Insights from atomistic models
PublicationOxidative damage to DNA is widely known to contribute to aging and disease. This relationship has been extensively studied for telomeres – structures that cap chromosome ends – due to their role in cell proliferation and senescence, and exceptional susceptibility to oxidation. Indeed, the repetitive telomeric DNA sequence contains the 5′-GGG-3′ motif that has the lowest ionization potential of all trinucleotides. Accordingly, experiments...
-
Deep eutectic solvents – Ideal solution for clean air or hidden danger?
PublicationThe industrial sector is one of the fastest-growing sources of greenhouse gases, due to its excessive energy consumption to meet the rapidly growing demand for energy-intensive products. The use of deep eutectic solvents (DESs) has been studied extensively in order to cope with these harmful gases, but their usage can be an issue in respect to ecological reasons. Do deep eutectic solvents harm the atmosphere? Yes, these solvents...
-
Multi-GPU UNRES for scalable coarse-grained simulations of very large protein systems
PublicationGraphical Processor Units (GPUs) are nowadays widely used in all-atom molecular simulations because of the advantage of efficient partitioning of atom pairs between the kernels to compute the contributions to energy and forces, thus enabling the treatment of very large systems. Extension of time- and size-scale of computations is also sought through the development of coarse-grained (CG) models, in which atoms are merged into extended...
-
Texture or Linker? Competitive Patterning of Receptor Assembly toward Ultra-Sensitive Impedimetric Detection of Viral Species at Gold-Nanotextured Titanium Surfaces
PublicationIn this work, we study the electrodes with a periodic matrix of gold particles pattered by titanium dimples and modified by 3-mercaptopropionic acid (MPA) followed by CD147 receptor grafting for specific impedimetric detection of SARS-CoV-2 viral spike proteins. The synergistic DFT and MM/MD modeling revealed that MPA adsorption geometries on the Au–Ti surface have preferential and stronger binding patterns through the carboxyl...
-
A new open-source software developed for numerical simulations usingdiscrete modeling methods
PublicationThe purpose of this work is to present the development of an open-source software based on a discrete description of matter applied to study the behavior of geomaterials. This software uses Object Oriented Programming techniques, and its methodology design uses three different methods, which are the Discrete Element Method (DEM) [F. Donzé, S.A. Magnier, Formulation of a three-dimensional numerical model of brittle behavior, Geophys....
-
Thermodynamics and kinetics of amphotericin B self-association in aqueous solution characterized in molecular detail
PublicationAmphotericin B (AmB) is a potent but toxic drug commonly used to treat systemic mycoses. Its efficiency as a therapeutic agent depends on its ability to discriminate between mammalian and fungal cell membranes. The association of AmB monomers in an aqueous environment plays an important role in drug selectivity, as oligomers formed prior to membrane insertion – presumably dimers – are believed to act differently on fungal (ergosterol-rich)...
-
Communication: Inside the water wheel: Intrinsic differences between hydrated tetraphenylphosphonium and tetraphenylborate ions
PublicationTetraphenylphosphonium tetraphenylborate (TPTB) is a common reference electrolyte in physical chemistry of solutions allowing for a convenient partitioning of thermodynamic properties into single-ion contributions. Here, we compute on the basis of ab initio molecular dynamics simulations the infrared (IR) spectra for hydrated constituent ions of the TPTB assumption. Using spectral decomposition techniques, we extract important...
-
Extracting functional groups of ALLINI to design derivatives of FDA‐approved drugs: Inhibition of HIV‐1 integrase
PublicationHIV‐1 integrase (IN) is crucial for integration of viral DNA into the host genome and a promising target in development of antiretroviral inhibitors. In this work, six new compounds were designed by linking the structures of two different class of HIV‐1 IN inhibitors (active site binders and allosteric IN inhibitors (ALLINIs)). Among newly designed compounds, INRAT10b was found most potent HIV‐1 IN inhibitor considering different...
-
Laser-Induced Graphitization of Polydopamine on Titania Nanotubes
PublicationSince the discovery of laser-induced graphite/graphene, there has been a notable surge of scientific interest in advancing diverse methodologies for their synthesis and applications. This study focuses on the utilization of a pulsed Nd:YAG laser to achieve graphitization of polydopamine (PDA) deposited on the surface of titania nanotubes. The partial graphitization is corroborated through Raman and XPS spectroscopies and supported...
-
Unique agreement of experimental and computational infrared spectroscopy: a case study of lithium bromide solvation in an important electrochemical solvent
PublicationInfrared (IR) spectroscopy is a widely used and invaluable tool in the studies of solvation phenomena in electrolyte solutions. Using state-of-the-art chemometric analysis of a spectral series measured in a concentration-dependent manner, the spectrum of the solute-affected solvent can be extracted, providing a detailed view of the structural and energetic states of the solvent molecules influenced by the solute. Concurrently,...
-
Theoretical calculation of the physico-chemical properties of 1-butyl-4-methylpyridinium based ionic liquids
PublicationACCEPTED MAIonic liquids (ILs) have attracted much attention for their unique physicochemical properties, which can be designed as needed by altering the ion combinations. Besides experimental work, numerous computational studies have been concerned with prediction of physical properties of ILs. The results of molecular dynamics simulations of ILs depend strongly on the proper force field parameterization. Classical force fields...
-
Mechanism of antifreeze protein functioning and the “anchored clathrate water” concept
PublicationIn liquid water, there is a natural tendency to form aggregates that consist of water molecules linked by hydrogen bonds. Such spontaneously formed aggregates are surrounded by a "sea" of disordered water molecules, with both forms remaining in equilibrium. The process of creating water aggregates also takes place in the solvation water of proteins, but in this case the interactions of water molecules with the protein surface shift...
-
Investigating the disease- modifying properties of sclerotiorin in Alzheimer's therapy using acetylcholinesterase inhibition
PublicationAlzheimer's disease (AD) is a progressive neurodegenerative disorder caused due to the damage and loss of neurons in specific brain regions. It is the most common form of dementia observed in older people. The symptoms start with memory loss and gradually cause the inability to speak and do day-to-day activities. The cost of caring for those affected individuals is huge and is probably beyond most developing countries capability....
-
Fast Multi-Objective Aerodynamic Optimization Using Sequential Domain Patching and Multifidelity Models
PublicationExploration of design tradeoffs for aerodynamic surfaces requires solving of multi-objective optimization (MOO) problems. The major bottleneck here is the time-consuming evaluations of the computational fluid dynamics (CFD) model used to capture the nonlinear physics involved in designing aerodynamic surfaces. This, in conjunction with a large number of simulations necessary to yield a set of designs representing the best possible...
-
Modelling hydraulic and capillary-driven two-phase fluid flow in unsaturated concretes at the meso-scale with a unique coupled DEM-CFD technique
PublicationThe goal of the research was to demonstrate the impact of thin porous interfacial transition zones (ITZs) between aggregates and cement matrix on fluid flow in unsaturated concrete caused by hydraulic/capillary pressure. To demonstrate this impact, a novel coupled approach to simulate the two-phase (water and moist air) flow of hydraulically and capillary-driven fluid in unsaturated concrete was developed. By merging the discrete...
-
Novel DNA-binding protein from Nanoarchaeum equitans Kin4-M binds all kinds of nucleic acids
PublicationNanoarchaeum equitans is the only known representative of Archaea phylum Nanoarchaeota and stands out as one of the tiniest known living organism. What is more it has smallest genome, which is only 490.885 base pairs long. It is also one of the most compact genomes. According to predictions about 95% of the DNA encodes proteins or stable RNA. Nanoarchaeum equitans lacks genes for most vital metabolic pathways including lipid, cofactor,...
-
Characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria
PublicationSingle-stranded DNA-binding proteins (SSBs) are indispensable elements in the cells of all living organisms. SSB proteins interact with ssDNA insequence in an independent manner, preventing them from forming secondary structures and from degradation by nucleases. In this way, SSB-binding proteins participate in all processes involving ssDNA, such as replication, repair and recombination. Although there are differences in amino...
-
Characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria
PublicationSingle-stranded DNA-binding proteins (SSBs) are indispensable elements in the cells of all living organisms. SSB proteins interact with ssDNAinsequence in an independent manner, preventing them from forming secondary structures and from degradation by nucleases. In this way, SSB-binding proteins participate in all processes involving ssDNA, such as replication, repair and recombination.Although there are differences in amino acid...
-
Intercalation complex of imidazoacridinone C-1311, a potential anticancer drug, with DNA helix d(CGATCG)2: stereostructural studies by 2D NMR spectroscopy.
PublicationImidazoacridinone C-1311 (Symadex®) is a powerful antitumor agent, which successfully made its way through the Phase I clinical trials and has been recommended for Phase II few a years ago. It has been shown experimentally that during the initial stage of its action C-1311 forms a relatively stable intercalation complex with DNA, yet it has shown no base-sequence specificity while binding to DNA. In this paper, the d(CGATCG)2:C-1311...
-
Continuum contact model for friction between graphene sheets that accounts for surface anisotropy and curvature
PublicationUnderstanding the interaction mechanics between graphene layers and co-axial carbon nanotubes (CNTs) is essential for modeling graphene and CNT-based nanoelectromechanical systems. This work proposes a new continuum contact model to study interlayer interactions between curved graphene sheets. The continuum model is calibrated and validated using molecular dynamics (MD) simulations. These are carried out employing the reactive...
-
A novel one-variable first-order shear deformation theory for biaxial buckling of a size-dependent plate based on Eringen’s nonlocal differential law
PublicationPurpose – This paper aims to present a new one-variable first-order shear deformation theory (OVFSDT) using nonlocal elasticity concepts for buckling of graphene sheets. Design/methodology/approach – The FSDT had errors in its assumptions owing to the assumption of constant shear stress distribution along the thickness of the plate, even though by using the shear correction factor (SCF), it has been slightly corrected, the errors...
-
Theoretical examination of the fracture behavior of BC3 polycrystalline nanosheets: Effect of crack size and temperature
Publication2D carbon graphene nanostructures are elements of advanced materials and systems. This theoretical survey provides explanation to the mechanical and fracture behavior of mono- and polycrystalline BC3 nanosheets (denoted as MC- and PCBC3NS, respectively) as a function of temperature and the type of crack defects. The mechanical performance of PCBC3NS at elevated temperatures was monitored varying the number of grain boundaries (the...
-
Enhanced susceptibility of SARS-CoV-2 spike RBD protein assay targeted by cellular receptors ACE2 and CD147: Multivariate data analysis of multisine impedimetric response
PublicationSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cells through the binding of spike protein to the host cell surface-expressing angiotensin-converting enzyme 2 (ACE2) or by endocytosis mediated by extracellular matrix metalloproteinase inducer (CD147). We present extended statistical studies of the multisine dynamic electrochemical impedance spectroscopy (DEIS) revealing interactions between Spike RBD and...
-
Molecular transformation of dissolved organic matter in manganese ore-mediated constructed wetlands for fresh leachate treatment
PublicationThe organic matter (OM) and nitrogen in Fresh leachate (FL) from waste compression sites pose environmental and health risks. Even though the constructed wetland (CW) can efficiently remove these pollutants, the molecular-level transformations of dissolved OM (DOM) in FL remain uncertain. This study reports the molecular dynamics of DOM and nitrogen removal during FL treatment in CWs. Two lab-scale vertical-flow CW systems were...
-
Evolution towards simplicity in bacterial small heat shock protein system
PublicationEvolution can tinker with multi-protein machines and replace them with simpler single-protein systems performing equivalent functions in an equally efficient manner. It is unclear how, on a molecular level, such simplification can arise. With ancestral reconstruction and biochemical analysis, we have traced the evolution of bacterial small heat shock proteins (sHsp), which help to refold proteins from aggregates using either two...
-
Role of the disulfide bond in stabilizing and folding of the fimbrial protein DraE from uropathogenic Escherichia coli
PublicationDr fimbriae are homopolymeric adhesive organelles of uropathogenic Escherichia coli composed of DraE subunits, responsible for the attachment to host cells. These structures are characterized by enormously high stability resulting from the structural properties of an Ig-like fold of DraE. One feature of DraE and other fimbrial subunits that makes them peculiar among Ig-like domain-containing proteins is a conserved disulfide bond...
-
Karaś P., Kochanowicz K., Pitek M., Domański P., Obuchowski I., Tomiczek B., Liberek K.: Evolution towards simplicity in bacterial small heat shock protein system// eLife -, (2023), s.1-21
PublicationEvolution can tinker with multi-protein machines and replace them with simpler single-protein systems performing equivalent functions in an equally efficient manner. It is unclear how, on a molecular level, such simplification can arise. With ancestral reconstruction and biochemical analysis, we have traced the evolution of bacterial small heat shock proteins (sHsp), which help to refold proteins from aggregates using either...