Filters
total: 162
filtered: 158
Chosen catalog filters
Search results for: chemical recycling
-
Experimental Validation of the Chemical Recycling of Crystalline Silicon Solar Cells
PublicationW ostatnich latach systemy fotowoltaiczne stają się bardzo popularne na całym świecie jako korzystne dla środowiska rozwiązanie problemów energetycznych. Zagadnienie zagospodarowania zużytych elementów systemów fotowoltaicznych, których ilość w przyszłości może być znaczna, nie zostało do tej pory opracowane. Konieczne jest znalezienie optymalnej metody recyklingu i ponownego wykorzystania wycofanych z użycia elementów składowych...
-
A New Approach to Chemical Recycling of Polyamide 6.6 and Synthesis of Polyurethanes with Recovered Intermediates
PublicationA new efficient method for the chemical decomposition of polyamide 6.6 by the glycolysis and amino-glycolysis processes was proposed. The glycolysis was conducted using the mass excess of ethylene glycol (EG) as a decomposing agent in the presence of a catalyst. Also, a mixture of EG and triethylenetetramine was used as another decomposing agent in the amino- glycolysis process. The described process of decomposition did not...
-
Chemical recycling of plastic waste as a mean to implement the circular economy model in the European Union
Publication -
The influence of different glycerine purities on chemical recycling process of polyurethane waste and resulting semi‐products
PublicationChemical recycling is the most favourable recycling method due to the possibility of polyol recovery. This work is dedicatedto the utilisation of crude glycerine and polyurethane waste. It aims at determining the impact of the use of glycerine fromthe production of biodiesel with various degrees of purity as a cleavage agent on the decomposition process of polyurethanefoam. The influence of glycerine purit y on the chemical structure...
-
Chemical, thermal and laser processes in recycling of photovoltaic silicon solar cells and modules
PublicationIn recent years, photovoltaic power generation systems have been gaining unprecedented attention as an environmentally beneficial method to solve the energy problem. From the economic point of view the pure silicon, which can be recapture from the used cells, is the most important material due to its cost and shortage. In the paper selected methods of used or damaged module and cells recycling and experimental results are presented....
-
Chemical treatment of crystalline silicon solar cells as a main stage of pv modules recycling = Obróbka chemiczna krzemowych ogniw słonecznych jako najważniejszy etap w recyklingu modułów fotowoltaicznych
PublicationIn recent years, photovoltaic systems have gained worldwide recognition and popularity as a environmentally friendly way of solving energetic problems. However, a problem of utilizing worn out photovoltaic systems, amount of which will rapidly increase in the future, is yet to be solved. Establishing a technology of recycling and reusing obsolete photovoltaic panels is a necessity.Photovoltaic modules in crystalline silicon solar...
-
Obróbka chemiczna krzemowych ogniw słonecznych jako najważniejszy etap w recyklingu modułów fotowoltaicznych = Chemical treatment of the crystalline silicon solar cells as the main stage of PV modules recycling
PublicationZaproponowano metodę zagospodarowania krzemowych ogniw fotowoltaicznych, wycofanych z użycia. Dla ogniw PV z krystalicznego krzemu prowadzono następujące po sobie procesy usuwania: powłok metalicznych, warstwy antyrefleksyjnej i złącza n-p przez wytrawianie. Skład roztworów trawiących dostosowywano do różnych rodzajów ogniw krzemowych. W celu opracowania uniwersalnej kąpieli trawiącej konieczne jest wprowadzanie pewnych modyfikacji...
-
From polymer waste to potential main industrial products: Actual state of recycling and recovering
Publicationlastics have become widely used materials in everyday life due to their special properties such as durability, easy processing, light-weight and low-cost of production. However, because of their stable and non-biodegradable nature, postconsumer plastics become an issue to the environment. The growing amounts of waste are generated, as plastic products are commonly used only once before disposal. The alternatives of practical techniques...
-
Recycling of Polyurethanes Containing Flame-Retardants and Polymer Waste Transformed into Flame-Retarded Polyurethanes
PublicationThe growing number of polyurethanes (PUs) produced every year has developed methods for their mechanical and chemical recycling which yield valuable products like substitutes for commercial polyols or flame-retardants. PUs can be produced in different shapes and forms (i.e., elastomers, flexible or rigid foams, coatings, etc.) using several different components (i.e., di- or polyisocyanates, ester- or ether-based polyols, low-molecular...
-
Thermo-Chemical Decomposition Study of Polyurethane Elastomer Through Glycerolysis Route with Using Crude and Refined Glycerine as a Transesterification Agent
PublicationDue to the increasing amount of polyurethane waste, chemical recycling of these materials is a topic of growing interest for many researchers. The primary pur- pose of polyurethane feedstock recycling is to recover the starting polyol. In this study glycerolysis using glycerine from two sources and two purity grades is proposed as a method of chemical recycling. The main effort of this paper focuses on the employment of commercial...
-
Rheological characteristics of oligomeric semiproducts gained via chemical degradation of polyurethane foam using crude glycerin in the presence of different catalysts
PublicationPolyurethane (PU) recycling is a topic of growing interest due to the increasing amount of polyurethane waste. The main purpose of polyurethane chemical recycling is to recover the starting polyol. In this study, a method of polyurethane thermochemical recycling, glycerolysis by means of crude glycerin, is proposed. This work presents a comparative study of commercial catalysts used in order to accelerate the decomposition process,...
-
Valorization of Bioplastic Waste: A Review on Effective Recycling Routes for the Most Widely Used Biopolymers
PublicationPlastics-based materials have a high carbon footprint, and their disposal is a considerable problem for the environment. Biodegradable bioplastics represent an alternative on which most countries have focused their attention to replace of conventional plastics in various sectors, among which food packaging is the most significant one. The evaluation of the optimal end-of-life process for bioplastic waste is of great importance...
-
Polyurethane Glycerolysate as a Modifier of the Properties of Natural Rubber Mixtures and Vulcanizates
PublicationChemical recycling of polyurethanes can be realized in several different ways, but the most important methods are glycolysis and glycerolysis. Both methods permit recovery of polyols (when the process is realized with the mass excess of depolymerizing agent) or substitutes of polyols, which contain urethane moieties in the main chains and terminate mainly in hydroxyl groups (when the process is realized with the mass excess of...
-
Recovery of Valuable Materials and Methods for Their Management When Recycling Thin-Film CdTe Photovoltaic Modules
PublicationDue to the development of new photovoltaic technologies, there is a need to research new recycling methods for these new materials. The recovery of metals from photovoltaic (PV) modules would reduce the consumption of raw materials. Therefore, the development of recycling technologies for used and damaged modules of newer generations is important for environmental reasons. The aim of the research is to shed light on the nature...
-
Recycling of Waste Rubber by Thermo-Mechanical Treatment in a Twin-Screw Extruder
PublicationRecycling of waste tires is a significant issue considering both environmental and economic aspects. One of the leading recycling routes is the shredding of tires resulting in the generation of ground tire rubber. This material can be easily introduced into various polymer matrices as a filler, reducing the use of conventionally applied petroleum-based materials. In such cases, it is essential to ensure sufficient interfacial compatibility,...
-
The Effect of Polyurethane Glycolysate on the Structure and Properties of Natural Rubber/Carbon Black Composites
PublicationIn this work the use of polyurethane chemical recycling product (i.e. glycolysis of polyurethane waste realized with the mass excess of polymer) as a plasticizer for natural rubber-based composites was proposed. The effect of plasticizer type (napthenic oil and polyurethane foam glycolysate) and amount (2, 4, 6 or 8 parts per 100 parts of natural rubber) on the processing properties of rubber mixtures and chemical structure, swelling,...
-
Waste Rubber Pyrolysis: Product Yields and Limonene Concentration
PublicationTires, conveyor belts, floor mats, and shoe soles form a main-stream of rubber waste. The amount of these used materials continuously increases due to development of the rubber market. Therefore, pro-ecological utilization (i.e., energy recycling instead of burning) and recovering valuable and recyclable materials becomes an urgent necessity. In this regard, this work was devoted to the chemical recycling of selected used rubber...
-
Single-phase product obtained via crude glycerine depolymerisation of polyurethane elastomer: structure characterisation and rheological behaviour
PublicationPolyurethane recycling is a topic of growing interest due to the increasing amount of polyurethanewaste. The main purpose of polyurethane feedstock recycling is to recover the starting polyol, a valuable material. In thiswork, amethod of polyurethane thermo-chemical recycling, glycerolysisbymeansof crude glycerine, is proposed. Themaineffort is focusedonthe employment of crude glycerine without purification from biodiesel production...
-
The use of recycled semiconductor material in crystalline silicon photovoltaic modules production - A life cycle assessment of environmental impacts
PublicationTo offset the negative impact of photovoltaic modules on the environment, it is necessary to introduce a longterm strategy that includes a complete lifecycle assessment of all system components from the production phase through installation and operation to disposal. Recycling of waste products and worn-out systems is an important element of this strategy. As the conclusions from the previous studies have shown, thermal treatment...
-
Morphology and properties of recycled polyethylene/ground tyre rubber/thermoplastic poly(ester-urethane) blends
PublicationThe growing amount of plastics waste produced every year resulted in development of mechanical and chemical recycling methods of polymers and their blends or composites. From the environmental point of view, the possibility of plastics waste reusing and recycling is desirable. In this study three polymer blends were obtained with using recycled polyethylene (RPE), ground tyre rubber (GTR) and thermoplastic poly(ester-urethane)...
-
DETERMINATION OF THE HYDROXYL NUMBER OF GROUND TIRE RUBBER PARTICLES VIA MODIFIED TEST METHOD FOR ISOCYANATE GROUPS
PublicationNowadays, considering the environmental trends and law regulations associated with the circular economy, it is very important to seek for the methods of by-products and waste utilization. The example of such material, which requires the attention and recycling method is ground tire rubber generated during recycling of post-consumer car tires. It can be introduced into various polymer matrices as a filler, but to enhance its effectivity...
-
One More Step Towards a Circular Economy for Thermal Insulation Materials—Development of Composites Highly Filled with Waste Polyurethane (PU) Foam for Potential Use in the Building Industry
PublicationThe rapid development of the building sector has created increased demand for novel materials and technologies, while on the other hand resulting in the generation of a severe amount of waste materials. Among these are polyurethane (PU) foams, which are commonly applied as thermal insulation materials. Their management is a serious industrial problem, due to, for example, their complex chemical composition. Although some chemical...
-
The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations.
PublicationThis paper aims at the utilisation of glycerolysate (Gly) obtained in polyurethane recycling process by means of crude glycerine, which has in its structure hydroxyl end groups that allow for further processing. Polyurethanes (PUs) were synthesised using prepolymer method with the mixture of neat polyol and glycerolysate, in different ratios, with 4,4-diphenylmethane diisocyanate (MDI). The prepolymer was subsequently extended...
-
Recycling of Polyurethanes
PublicationPolyurethane waste can be recycled by mechanical methods (i.e., grinding and applying as a filler or pressing with a bonding agent) and chemical methods (mainly by e.g., glycolysis, hydrolysis, or aminolysis). There is also possibility to the recover energy from polyurethanes waste (by incineration, gasification, and pyrolysis).
-
Progress in used tyres management in the european union: a review
PublicationThe dynamic increase in the manufacture of rubber products, particularly those used in the automobile industry, is responsible for a vast amount of wastes, mostly in the form of used tyres, of which more than 17 million tonnes are produced globally each year. The widely differing chemical compositions and the cross-linked structures of rubber in tyres are the prime reason why they are highly resistant to biodegradation, photochemical...
-
OIL-ASSISTED THERMO-MECHANICAL RECLAMATION OF GROUND TIRE RUBBER
PublicationNowadays, it is crucial to seek for the methods of by-products and waste utilization, considering both environmental and economic factors. The example of waste material generated in the massive amounts, which requires the attention is ground tire rubber generated during recycling of post-consumer car tires. It can be applied as a filler into different polymer matrices, but to enhance its effectivity proper modifications should...
-
Cast polyurethanes obtained from reactive recovered polyol intermediates via crude glycerine decomposition process
PublicationIn this work, the possibility of applying intermediates from polyurethane waste recycling in polyurethane synthesis was presented. Polyurethanes were synthesised in a two-step method using a mixture of petrochemical polyol and glycerolysate, used as a reactive component, 4,4-diphenylmethane diisocyanate (MDI) and 1,4-buthanediol (BD). Glycerolysates were produced during decomposition of polyurethane elastomer by crude glycerine...
-
The Impact of Long-Time Chemical Bonds in Mineral-Cement-Emulsion Mixtures on Stiffness Modulus
PublicationDeep cold in-place recycling is the most popular method of reuse of existing old and deteriorated asphalt layers of road pavements. In Poland, in most cases, the Mineral-Cement-Emulsion mixture technology is used, but there are also applications combining foamed bitumen and cement. Mineral-Cement-Emulsion mixtures contain two different binding agents – cement as well as asphalt from the asphalt emulsion. Asphalt creates asphalt...
-
Structure-Property Relationship and Multiple Processing Studies of Novel Bio-Based Thermoplastic Polyurethane Elastomers
PublicationCurrently, the growing demand for polymeric materials has led to an increased need to develop effective recycling methods. This study focuses on the multiple processing of bio-based thermoplastic polyurethane elastomers (bio-TPUs) as a sustainable approach for polymeric waste management through mechanical recycling. The main objective is to investigate the influence of two reprocessing cycles on selected properties of bio-TPUs....
-
Waste materials assessment for phosphorus adsorption toward sustainable application in circular economy
PublicationPhosphorus is the main determinant of nutrient enrichment in the water bodies. Many resources including nutrients may be shortly exhausted, assuming current consumption. This scenario leads to growing interest in resources recovery and/or reuse, which together with sustainable energy consumption and waste reduction are the main courses of the circular economy. Usage of coagulants in wastewater treatment plants (WWTP) does not allow...
-
iPP/HDPE blends compatibilized by a polyester: An unconventional concept to valuable products
PublicationPolyolefins are the most widely used plastics accounting for a large fraction of the polymer waste stream. Although reusing polyolefins seems to be a logical choice, their recycling level remains disappointingly low. This is mainly due to the lack of large-scale availability of efficient and inexpensive compatibilizers for mixed polyolefin waste, typically consisting of high-density polyethylene (HDPE) and isotactic polypropylene...
-
Thermoplastic polyurethanes with glycolysate intermediates from polyurethane waste recycling
PublicationThe polyol is a major component in polyurethane formulations and therefore introducing to the formulation recycled polyol (obtained during decomposition process) allows decreasing the usage of pure petrochemical components. In this work, thermoplastic polyurethanes were prepared using various mixtures of a petrochemical macrodiol poly(ethylene-butylene adipate)diol (PEBA) and a recycled glycolysate intermediate, called glycolysate...
-
Możliwości odzysku fosforu z odcieków, osadów ściekowych i popiołów po termicznym przekształcaniu osadów ściekowych
PublicationW ostatnich latach zaobserwowano rosnącą świadomość o ograniczonych zasobach fosforu. Szacuje się, że mogą one ulec wyczerpaniu w ciągu 100 lat, przy obecnym zaawansowaniu technologii. Ponad 80% wydobywanego złoża wykorzystywane jest do produkcji nawozów sztucznych oraz w przemyśle chemicznym. Taka perspektywa zwiększa zainteresowanie recyklingiem fosforu, który może być odzyskiwany ze ścieków w fazie płynnej, z odwodnionych osadów...
-
Advanced nanomaterials and metal-organic frameworks for catalytic bio-diesel production from microalgal lipids – A review
PublicationIncreasing energy demands require exploring renewable, eco-friendly (green), and cost-effective energy resources. Among various sources of biodiesel, microalgal lipids are an excellent resource, owing to their high abundance in microalgal biomass. Transesterification catalyzed by advanced materials, especially nanomaterials and metal-organic frameworks (MOFs), is a revolutionary process for overcoming the energy crisis. This review...
-
A facile strategy for reclaiming discarded graphite and harnessing the rate capabilities of graphite anodes
PublicationGraphite negative electrodes are unbeaten hitherto in lithium-ion batteries (LiBs) due to their unique chemical and physical properties. Thus, the increasing scarcity of graphite resources makes smart recycling or repurposing of discarded graphite particularly imperative. However, the current recycling techniques still need to be improved upon with urgency. Herein a facile and efficient hydrometallurgical process is reported to...
-
Can bottom sediments be a prospective fertilizing material? A chemical composition analysis for potential reuse in agriculture.
PublicationEvery year huge amounts of bottom sediments are extracted worldwide, which need to be dis-posed. The recycling of bottom sediments for soil fertilization is in line with the long-promoted circular economy policy and enables the use of micro and macronutrients accumulated in sedi-ments for soil fertilization. When considering potential agricultural reuse of the dredge sediments, the first necessary step should be to analyze whether...
-
Application of Spinel and Hexagonal Ferrites in Heterogeneous Photocatalysis
PublicationSemiconducting materials display unique features that enable their use in a variety of applications, including self-cleaning surfaces, water purification systems, hydrogen generation, solar energy conversion, etc. However, one of the major issues is separation of the used materials from the process suspension. Therefore, chemical compounds with magnetic properties have been proposed as crucial components of photocatalytic composites,...
-
Compatibilization of polymeric composition filled with ground tire rubber – short review
PublicationWaste rubber is recognized as valuable materials resource and searching for new recycling methods is the main activity of many research institutions and companies. At the turn of the last years only few scientific papers about foamed polymer compositions filled with ground tire rubber were published. In paper review about progress in compatibilization and foaming of polymeric compositions filled with ground tire rubber.
-
Compressive Strength and Leaching Behavior of Mortars with Biomass Ash
Publication -
Evaluation of structural change during fast transformation process of cross-linked NR into liquid NR by light pyrolysis
PublicationThe presence of cross-linked networks in rubber creates a tremendous problem for recycling and reusing of waste rubber. Fast transformation of cross-linked natural rubber (NR) into liquid natural rubber was carried out by light pyrolysis in temperature range from 240 to 300 °C in variable time (in range: 1–30 min). The transformation efficiency was evaluated by measuring the sol fraction and the cross-link density of the gel fraction....
-
The Influence of Cement Type on Early Properties of Cold In-Place Recycled Mixtures
PublicationCold in-place recycling is a commonly used maintenance treatment in rehabilitation of low and medium volume roads in Poland. Typically, two types of binding agents are used—cement and bituminous emulsion (or foamed bitumen).Due to the harsh Polish climate with many freeze/thaw cycles and frequent occurrence of saturated conditions, the used amounts of cement are higher than those commonly used in warmer parts of Europe. While there...
-
Comprehensive analysis of low-temperature methods for reclaiming of ground tire rubber
PublicationManagement of waste tires has become an important topic for decades. The lack of an effective method to manage the materials as mentioned above leads to illegal landfills. This problematic waste can be divided into two main categories depending on the physical condition of the waste: (i) partially used tires; (ii) end-of-life tires. While the first group can be reused or retreaded, the second group requires special measures to...
-
Technological solutions to landfill management: Towards recovery of biomethane and carbon neutrality
PublicationInadequate landfill management poses risks to the environment and human health, necessitating action. Poorly designed and operated landfills release harmful gases, contaminate water, and deplete resources. Aligning landfill management with the Sustainable Development Goals (SDGs) reveals its crucial role in achieving various targets. Urgent transformation of landfill practices is necessary to address challenges like climate change,...
-
Integrated dewatering and stabilization system as an environmentally friendly technology in sewage sludge management in Poland
PublicationSludge treatment reed beds (STRBs) are an environmentally friendly technology which provides integrated dewatering and stabilization of sewage sludge. STRBs do not require the use of chemicals to improve the dewatering process. STRB is both, a low-emission and a low-energy-consuming method. After the stabilization process, sludge is characterized by the chemical composition similar to that of humus. The aim of the paper is to present...
-
Thermal Biomass Conversion: A Review
PublicationIn this paper, the most important methods of thermal conversion of biomass, such as: hydrothermal carbonization (180–250 °C), torrefaction (200–300 °C), slow pyrolysis (carbonization) (300–450 °C), fast pyrolysis (500–800 °C), gasification (800–1000 °C), supercritical steam gasification, high temperature steam gasification (>1000 °C) and combustion, were gathered, compared and ranked according to increasing temperature. A comprehensive...
-
Advancing sustainable wastewater management: A comprehensive review of nutrient recovery products and their applications
PublicationWastewater serves as a vital resource for sustainable fertilizer production, particularly in the recovery of nitrogen (N) and phosphorus (P). This comprehensive study explores the recovery chain, from technology to final product reuse. Biomass growth is the most cost-effective method, valorizing up to 95 % of nutrients, although facing safety concerns. Various techniques enable the recovery of 100 % P and up to 99 % N, but challenges...
-
Comprehensive Enhancement of Prepolymer-Based Flexible Polyurethane Foams’ Performance by Introduction of Cost-Effective Waste-Based Ground Tire Rubber Particles
PublicationMaterial innovations in polyurethane (PU) foams should ideally combine performance enhancement, environmental impact limitation, and cost reduction. These goals can be achieved by applying recycled or waste-based materials without broader industrial applications, implicating their low price. Herein, from 5 to 20 parts by weight of ground tire rubber (GTR) particles originated from the recycling of postconsumer car tires were incorporated...
-
Potential of Functionalized Polyolefins in a Sustainable Polymer Economy: Synthetic Strategies and Applications
PublicationPolymers play a crucial role in our modern life as no other material exists that is so versatile, moldable, and lightweight. Consequently, the demand for polymers will continue to grow with the human population, modernization, and technological developments. However, depleted fossil resources, increasing plastic waste production, ocean pollution, and related growing emission of greenhouse gases has led to a change in the way we...
-
A modern solid waste management strategy – the generation of new by-products
PublicationTo benefit the environment and society, EU legislation has introduced a ‘zero waste’ strategy, in which waste material should be converted to resources. Such legislation is supported by the solid waste hierarchy concept, which is a set of priorities in waste management. Under this concept, municipal solid waste plants (MSWPs) should be equipped with sorting and recycling facilities, composting/incineration units and landfill prisms...
-
Mechanical Recycling via Regrinding, Rebonding, Adhesive Pressing, and Molding
PublicationIncreasing amount of polyurethane foams waste (e.g. from the building or furniture industry) produced every year resulted in the intensive development of their recycling methods. This chapter covers most important mechanical recycling methods, i.e. regrinding, rebonding, adhesive pressing, and molding. The procedure, required equipment and chemicals (if needed) for each method were described. The possible applications of the products...