Filters
total: 2074
displaying 1000 best results Help
Search results for: SUPPORT VECTOR REGRESSION
-
Text Documents Classification with Support Vector Machines
Publication -
Support Vector Machines in Biomedical and Biometrical Applications
Publication -
Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support
PublicationIn this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...
-
Support Vector Machine Applied to Road Traffic Event Classification
PublicationThe aim of this paper is to present results of road traffic event signal recognition. First, several types of systems for road traffic monitoring, including Intelligent Transport System (ITS) are shortly described. Then, assumptions of creating a database of vehicle signals recorded in different weather and road conditions are outlined. Registered signals were edited as single vehicle pass by. Using the Matlab-based application...
-
Dangerous sound event recognition using Support Vector Machine classifiers
PublicationA method of recognizing events connected to danger based on their acoustic representation through Support Vector Machine classification is presented. The method proposed is particularly useful in an automatic surveillance system. The set of 28 parameters used in the classifier consists of dedicated parameters and MPEG-7 features. Methods for parameter calculation are presented, as well as a design of SVM model used for classification....
-
RSS-Based DoA Estimation for ESPAR Antennas Using Support Vector Machine
PublicationIn this letter, it is shown how direction-of-arrival (DoA) estimation for electronically steerable parasitic array radiator (ESPAR) antennas, which are designed to be integrated within wireless sensor network nodes, can be improved by applying support vector classification approach to received signal strength (RSS) values recorded at an antenna's output port. The proposed method relies on ESPAR antenna's radiation patterns measured...
-
Application of Support Vector Machine for Determination of Impact of Traffic-Induced Vibrations on Buildings
PublicationThe aim of the article is to present an algorithm of Support Vector Machine created to forecast the impact of traffic-induced vibrations on residential buildings. The method is designed to classify the object into one of two classes. The classification into the first class means that there is no impact of vibrations on the building, while classification to the second class indicates the possible influence and suggests the execution...
-
Fault detection in the marine engine using a support vector data description method
PublicationFast detection and correct diagnosis of any engine condition changes are essential elements of safety andenvironmental protection. Many diagnostic algorithms significantly improve the detection of malfunctions.Studies on diagnostic methods are rarely reported and even less implemented in the marine engine industry.To fill this gap, this paper presents the Support Vector Data Description (SVDD) method as applied to thefault detection...
-
A novel hybrid adaptive framework for support vector machine-based reliability analysis: A comparative study
PublicationThis study presents an innovative hybrid Adaptive Support Vector Machine - Monte Carlo Simulation (ASVM-MCS) framework for reliability analysis in complex engineering structures. These structures often involve highly nonlinear implicit functions, making traditional gradient-based first or second order reliability algorithms and Monte Carlo Simulation (MCS) time-consuming. The application of surrogate models has proven effective...
-
Prediction of Overall In Vitro Microsomal Stability of Drug Candidates Based on Molecular Modeling and Support Vector Machines. Case Study of Novel Arylpiperazines Derivatives
PublicationOther than efficacy of interaction with the molecular target, metabolic stability is the primary factor responsible for the failure or success of a compound in the drug development pipeline. The ideal drug candidate should be stable enough to reach its therapeutic site of action. Despite many recent excellent achievements in the field of computational methods supporting drug metabolism studies, a well-recognized procedure to model...
-
Sylwester Kaczmarek dr hab. inż.
PeopleSylwester Kaczmarek received his M.Sc in electronics engineering, Ph.D. and D.Sc. in switching and teletraffic science from the Gdansk University of Technology, Gdansk, Poland, in 1972, 1981 and 1994, respectively. His research interests include: IP QoS and GMPLS and SDN networks, switching, QoS routing, teletraffic, multimedia services and quality of services. Currently, his research is focused on developing and applicability...
-
Determination Of Gas Mixture Components Using Fluctuation Enhanced Sensing And The LS-SVM Regression Algorithm
PublicationThis paper analyses the effectiveness of determining gas concentrations by using a prototype WO3 resistive gas sensor together with fluctuation enhanced sensing. We have earlier demonstrated that this method can determine the composition of a gas mixture by using only a single sensor. In the present study, we apply Least-Squares Support-Vector-Machine-based (LS-SVM-based) nonlinear regression to determine the gas concentration...
-
Liniowe i nieliniowe modele wielowymiarowej kalibracji do predykcji stężenia substancji z pomiarów woltamperometrycznych
PublicationPomiary woltamperometryczne znajdują zastosowanie w wielu dziedzinach nauki i techniki, np. w przemyśle farmaceutycznym. Dane uzyskane w wyniku takich pomiarów zawierają informację odnośnie rodzaju i stężenia badanej substancji, jednakże są one często kłopotliwe w bezpośredniej interpretacji. Z tego powodu, istnieje konieczność wykorzystania odpowiednich metod matematycznych, które umożliwiają uzyskanie bezpośredniej i precyzyjnej...
-
Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction
PublicationThis work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...
-
Efficiency of gas detection algorithms using fluctuation enhanced sensing
PublicationEfficiency of various gas detection algorithms by applying fluctuation enhanced sensing method was discussed. We have analyzed resistance noise observed in resistive WO3- nanowires gas sensing layers. Power spectral densities of the recorded noise were used as the input data vectors for two algorithms: the principal component analysis (PCA) and the support vector machine (SVM). The data were used to determine gas concentration...
-
Computing methods for fast and precise body surface area estimation of selected body parts
PublicationCurrently used body surface area (BSA) formulas give satisfactory results only for individuals with typical physique, while for elderly, obese or anorectic people accurate results cannot be expected. Particularly noteworthy are the results for individuals with severe obesity (body-mass index greater than 35 kg/m2), for which BSA estimation errors reached 80%. The main goal of our study is the development of precise BSA models for...
-
Residue-Pole Methods for Variability Analysis of S-parameters of Microwave Devices with 3D FEM and Mesh Deformation
PublicationThis paper presents a new approach for variability analysis of microwave devices with a high dimension of uncertain parameters. The proposed technique is based on modeling an approximation of system by its poles and residues using several modeling methods, including ordinary kriging, Adaptive Polynomial Chaos (APCE), and Support Vector Machine Regression (SVM). The computational cost is compared with the traditional Monte-Carlo...
-
Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models
PublicationThis work addresses artificial-intelligence-based buried object characterization using 3-D full-wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different positions. The main contributions of this work are (i) development of a fast and accurate data driven surrogate modeling...
-
Method of selecting the LS-SVM algorithm parameters in gas detection process
PublicationIn this paper we showed the method of resistive gas sensors data processing. The UV irradiation and temperature modulation was applied to improve gas sensors’ selectivity and sensitivity. Noise voltage across the sensor’s terminals (proportional to its resistance fluctuations) was recorded to estimate power spectral density. This function was an input data vector for LS-SVM (least squares – support vector machine) algorithm, which...
-
An electronic nose for quantitative determination of gas concentrations
PublicationThe practical application of human nose for fragrance recognition is severely limited by the fact that our sense of smell is subjective and gets tired easily. Consequen tly, there is considerable need for an instrument that can be a substitution of the human sense of smell. Electronic nose devices from the mid 1980s are used in growing number of applications. They comprise an array of several electrochemical gas sensors...
-
Methodology for Performing Bathymetric Measurements of Shallow Waterbodies Using an UAV, and their Processing Based on the SVR Algorithm
PublicationState-of-art methods of bathymetric measurements for shallow waterbodies use Global Navigation Satellite System (GNSS) receiver, bathymetric Light Detection and Ranging (LiDAR) sensor or satellite imagery. Currently, photogrammetric methods with the application of Unmanned Aerial Vehicles (UAV) are gathering great importance. This publication aims to present step-by-step methodology for carrying out the bathymetric measurements...
-
Soft Sensor Application in Identification of the Activated Sludge Bulking Considering the Technological and Economical Aspects of Smart Systems Functioning
PublicationThe paper presented the methodology for the construction of a soft sensor used for activated sludge bulking identification. Devising such solutions fits within the current trends and development of a smart system and infrastructure within smart cities. In order to optimize the selection of the data-mining method depending on the data collected within a wastewater treatment plant (WWTP), a number of methods were considered, including:...
-
Efficiency of Artificial Intelligence Methods for Hearing Loss Type Classification: an Evaluation
PublicationThe evaluation of hearing loss is primarily conducted by pure tone audiometry testing, which is often regarded as golden standard for assessing auditory function. If the presence of hearing loss is determined, it is possible to differentiate between three types of hearing loss: sensorineural, conductive, and mixed. This study presents a comprehensive comparison of a variety of AI classification models, performed on 4007 pure tone...
-
Multicomponent ionic liquid CMC prediction
PublicationWe created a model to predict CMC of ILs based on 704 experimental values published in 43 publications since 2000. Our model was able to predict CMC of variety of ILs in binary or ternary system in a presence of salt or alcohol. The molecular volume of IL (Vm), solvent-accessible surface (Sˆ), solvation enthalpy (DsolvGN), concentration of salt (Cs) or alcohol (Ca) and their molecular volumes (Vms and Vma, respectively) were chosen...
-
Fundamentals of Data-Driven Surrogate Modeling
PublicationThe primary topic of the book is surrogate modeling and surrogate-based design of high-frequency structures. The purpose of the first two chapters is to provide the reader with an overview of the two most important classes of modeling methods, data-driven (or approx-imation), as well as physics-based ones. These are covered in Chap-ters 1 and 2, respectively. The remaining parts of the book give an exposition of the specific aspects...
-
News that Moves the Market: DSEX-News Dataset for Forecasting DSE Using BERT
PublicationStock market is a complex and dynamic industry that has always presented challenges for stakeholders and investors due to its unpredictable nature. This unpredictability motivates the need for more accurate prediction models. Traditional prediction models have limitations in handling the dynamic nature of the stock market. Additionally, previous methods have used less relevant data, leading to suboptimal performance. This study...
-
Detecting type of hearing loss with different AI classification methods: a performance review
PublicationHearing is one of the most crucial senses for all humans. It allows people to hear and connect with the environment, the people they can meet and the knowledge they need to live their lives to the fullest. Hearing loss can have a detrimental impact on a person's quality of life in a variety of ways, ranging from fewer educational and job opportunities due to impaired communication to social withdrawal in severe situations. Early...
-
Method for determining of shallow water depths based on data recorded by UAV/USV vehicles and processed using the SVR algorithm
PublicationBathymetric measurements in waters shallower than 1 m are necessary to monitor seafloor relief changes in the coastal zone. This is especially important for ensuring the safety of navigation, navigation efficiency, as well as during the design and monitoring of hydrotechnical structures. Therefore, the aim of this article is to present a method for determining of shallow water depths based on data recorded by Unmanned Aerial Vehicle...
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublicationThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
An algorithm for selecting a machine learning method for predicting nitrous oxide emissions in municipal wastewater treatment plants
PublicationThis study presents an advanced algorithm for selecting machine learning (ML) models for nitrous oxide (N2O) emission prediction in wastewater treatment plants (WWTPs) employing the activated sludge process. The examined ML models comprised multivariate adaptive regression spline (MARS), support vector machines (SVM), and extreme gradient boosting (XGboost). The study explores the concept that involves new criteria to select the...
-
Integration Data Model of the Bathymetric Monitoring System for Shallow Waterbodies Using UAV and USV Platforms
PublicationChanges in the seafloor relief are particularly noticeable in shallow waterbodies (at depths up to several metres), where they are of significance for human safety and environmental protection, as well as for which the highest measurement accuracy is required. The aim of this publication is to present the integration data model of the bathymetric monitoring system for shallow waterbodies using Unmanned Aerial Vehicles (UAV) and...
-
Experimental and Theoretical Insights into the Intermolecular Interactions in Saturated Systems of Dapsone in Conventional and Deep Eutectic Solvents
PublicationSolubility is not only a crucial physicochemical property for laboratory practice but also provides valuable insight into the mechanism of saturated system organization, as a measure of the interplay between various intermolecular interactions. The importance of these data cannot be overstated, particularly when dealing with active pharmaceutical ingredients (APIs), such as dapsone. It is a commonly used anti-inflammatory and...
-
Enhancing women’s engagement in economic activities through information and communication technology deployment: evidence from Central–Eastern European countries
PublicationThis study takes a macro perspective to examine the associations between the economic deployment of information and communication technology (ICT), women’s labor market participation, and economic growth in Central–Eastern European countries between 1990 and 2017. We use data extracted from World Bank Development Indicators, World Development Reports, and the World Telecommunication/ICT Indicators Database. Our methodological framework...
-
Sztuczne sieci neuronowe oraz metoda wektorów wspierających w bankowych systemach informatycznych
PublicationW artykule zaprezentowano wybrane metod sztucznej inteligencji do zwiększania efektywności bankowych systemów informatycznych. Wykorzystanie metody wektorów wspierających czy sztucznych sieci neuronowych w połączeniu z nowoczesną technologią mikroprocesorową umożliwia znaczący wzrost konkurencyjności banku poprzez dodanie nowych funkcjonalności. W rezultacie możliwe jest także złagodzenie skutków kryzysu finansowego.
-
Komputerowo wspomagana klasyfikacja wybranych sygnałów elektromiografii powierzchniowej
PublicationWykorzystywanie sygnałów elektromiografii powierzchniowej (ang. Surface Electromyography, SEMG) w procesach sterowania systemami rehabilitacyjnymi stanowi obecnie standardową procedurę. Popularność SEMG wynika z nieinwazyjności metody oraz możliwości szybkiej i precyzyjnej identyfikacji funkcji mięśniowej. W przypadku osób małoletnich proces klasyfikacji sygnałów jest utrudniony ze względu na mniejsze rozmiary i wyższą dynamikę...
-
Estimation of Average Speed of Road Vehicles by Sound Intensity Analysis
PublicationConstant monitoring of road traffic is important part of modern smart city systems. The proposed method estimates average speed of road vehicles in the observation period, using a passive acoustic vector sensor. Speed estimation based on sound intensity analysis is a novel approach to the described problem. Sound intensity in two orthogonal axes is measured with a sensor placed alongside the road. Position of the apparent sound...
-
Machine learning applied to acoustic-based road traffic monitoring
PublicationThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Machine learning applied to acoustic-based road traffic monitoring
PublicationThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Prognozowanie wpływu drgań komunikacyjnych na budynki mieszkalne za pomocą sztucznych sieci neuronowych i maszyn wektorów wspierających
PublicationDrgania komunikacyjne mogą stanowić duże obciążenie eksploatacyjne budynku, powodując zarysowania i spękania tynków, odpadanie wypraw, zarysowania konstrukcji, pękanie elementów konstrukcji lub nawet zawalenie się budynku. Pomiary drgań na rzeczywistych konstrukcjach są pracochłonne i kosztowne, a co ważne nie w każdym przypadku są one uzasadnione. Celem pracy jest analiza autorskiego algorytmu, dzięki któremu z dużym prawdopodobieństwem...
-
Inverse Modeling and Optimization of CSRR-based Microwave Sensors for Industrial Applications
PublicationDesign optimization of multivariable resonators is a challenging topic in the area of microwave sensors for industrial applications. This paper proposes a novel methodology for rapid re-design and parameter tuning of complementary split-ring resonators (CSRRs). Our approach involves inverse surrogate models established using pre-optimized resonator data as well as analytical correction techniques to enable rapid adjustment of geometry...
-
Algorytmy przetwarzania widm Ramana w procesie detekcji substancji chemicznych
PublicationRozprawa przedstawia szczegółowo algorytmy, jakie są stosowane podczas przetwarzania widm Ramana, rejestrowanych przenośnym spektrometrem o skończonej rozdzielczości. Pracę podzielono na osiem rozdziałów. W pierwszym określono cel i tezy pracy. Rozdział drugi opisuje podstawowe pojęcia dotyczące zjawiska Ramana oraz zasady budowy urządzeń do pomiarów widm Ramana. W rozdziale trzecim scharakteryzowano błędy występujące podczas pomiarów...
-
FFT analysis of temperature modulated semiconductor gas sensor response for the prediction of ammonia concentration under humidity interference
PublicationThe increasing environmental contamination forces the need to design reliable devices for detecting of the volatile compounds present in the air. For this purpose semiconductor gas sensors, which have been widely used for years, are often utilized. Although they have many advantages such as low price and quite long life time, they still lack of long term stability and selectivity. Namely, environmental conditions have significant...
-
Constructive Controllability for Incompressible Vector Fields
PublicationWe give a constructive proof of a global controllability result for an autonomous system of ODEs guided by bounded locally Lipschitz and divergence free (i.e. incompressible) vector field, when the phase space is the whole Euclidean space and the vector field satisfies so-called vanishing mean drift condition. For the case when the ODE is defined over some smooth compact connected Riemannian manifold, we significantly strengthen...
-
Support for Learning
Journals -
Tuning matrix-vector multiplication on GPU
PublicationA matrix times vector multiplication (matvec) is a cornerstone operation in iterative methods of solving large sparse systems of equations such as the conjugate gradients method (cg), the minimal residual method (minres), the generalized residual method (gmres) and exerts an influence on overall performance of those methods. An implementation of matvec is particularly demanding when one executes computations on a GPU (Graphics...
-
Application of Barycentric Coordinates in Space Vector PWM Computations
PublicationThis paper proposes the use of barycentric coordinates in the development and implementationof space-vector pulse-width modulation (SVPWM) methods, especially for inverters with deformed space-vector diagrams. The proposed approach is capable of explicit calculation of vector duty cycles, independentof whether they assume ideal positions or are displaced due to the DC-link voltage imbalance. The use ofbarycentric coordinates also...
-
The Hopf theorem for gradient local vector fields on manifolds
PublicationWe prove the Hopf theorem for gradient local vector fields on manifolds, i.e., we show that there is a natural bijection between the set of gradient otopy classes of gradient local vector fields and the integers if the manifold is connected Riemannian without boundary.
-
Determination of benzo(a)pyrene content in PM10 using regression methods
PublicationThe paper presents an attempt of application of multidimensional linear regression to estimation of an empirical model describing the factors influencing on B(a)P content in suspended dust PM10 in Olsztyn and Elbląg city regions between 2010 and 2013. During this period annual average concentration of B(a)P in PM10 exceeded the admissible level 1.5-3 times. Conducted investigations confirm that the reasons of B(a)P concentration...
-
Uncertainty estimation of loop impedance measurement determined by the vector method
PublicationThis article presents a detailed analysis of uncertainty estimation of loop impedance measurement determined by the vector method. The analysis includes the following estimates: resistance variance, voltage variance and time measurement variance. This paper presents a methodology for estimating the combined standard uncertainty of loop impedance by the vector method. The vector method allows to determine loop impedance based on...
-
A remark on singular sets of vector bundle morphisms
PublicationIf characteristic classes for two vector bundles over the same base space do not coincide, then the bundles are not isomorphic. We give under rather common assumptions a lower bound on the topological dimension of the set of all points in the base over which a morphism between such bundles is not bijective. Moreover, we show that this set is topologically non-trivial.