Search results for: LEARNING DESIGN
-
The evaluation of eGlasses eye tracking module as an extension for Scratch
PublicationIn this paper we present the possibility of using eGlasses eye tracking module as an extension for Scratch programming tool which is a visual programming language supporting computer skills learning. The main concept behind this project is to setup the interface for rapid interaction design. Eye tracking is a powerful tool for hands free communication but for that requires a dedicated software. This software is rarely tailored...
-
Analysis of pedestrian activity before and during COVID-19 lockdown, using webcam time-lapse from Cracow and machine learning
Publication -
Determinants of anxiety levels among young males in a threat of experiencing military conflict–Applying a machine-learning algorithm in a psychosociological study
Publication -
Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling
PublicationDeep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors....
-
Precise Identification of Different Cervical Intraepithelial Neoplasia (CIN) Stages, Using Biomedical Engineering Combined with Data Mining and Machine Learning
PublicationCervical cancer (CC) is one of the most common female cancers worldwide. It remains a significant global health challenge, particularly affecting women in diverse regions. The pivotal role of human papillomavirus (HPV) infection in cervical carcinogenesis underscores the critical importance of diagnostic strategies targeting both HPV infection and cervical...
-
Weighted Ensemble with one-class Classification and Over-sampling and Instance selection (WECOI): An approach for learning from imbalanced data streams
Publication -
E-learning przez Internet w szkolnictwie wyższym. Doświadczenia Szkoły Głównej Handlowej w Warszawie i Politechniki Gdańskiej.
PublicationOpisano cztery podstawowe rodzaje e-learningu, przedstawiono strukturę funkcjonalną systemów zarządzania nauczaniem na odległość i zarządzania treścią nauczania (ang. LMS, LCMS) oraz zaprezentowano doświadczenia Szkoły Głównej Handlowej w Warszawie i Politechniki Gdańskiej w nauczaniu na odległość.
-
Machine Learning Assisted Interactive Multi-objectives Optimization Framework: A Proposed Formulation and Method for Overtime Planning in Software Development Projects
PublicationMachine Learning Assisted Interactive Multi-objectives Optimization Framework: A Proposed Formulation and Method for Overtime Planning in Software Development Projects Hammed A. Mojeed & Rafal Szlapczynski Conference paper First Online: 14 September 2023 161 Accesses Part of the Lecture Notes in Computer Science book series (LNAI,volume 14125) Abstract Software development project requires proper planning to mitigate risk and...
-
An automated learning model for twitter sentiment analysis using Ranger AdaBelief optimizer based Bidirectional Long Short Term Memory
PublicationSentiment analysis is an automated approach which is utilized in process of analysing textual data to describe public opinion. The sentiment analysis has major role in creating impact in the day-to-day life of individuals. However, a precise interpretation of text still relies as a major concern in classifying sentiment. So, this research introduced Bidirectional Long Short Term Memory with Ranger AdaBelief Optimizer (Bi-LSTM RAO)...
-
Optimizing Control of Wastewater Treatment Plant With Reinforcement Learning: Technical Evaluation of Twin-Delayed Deep Deterministic Policy Gradient Agent
PublicationControl of the wastewater treatment processes presents significant challenges due to the fluctuating nature of inflow and wastewater composition, alongside the system’s non-linear dynamics. Traditional control methods struggle to adapt to these variations, leading to an economically suboptimal operation of the process and a violation of norms imposed on the quality of wastewater discharged to the catchment area. This study proposes...
-
Improvement of speech intelligibility in the presence of noise interference using the Lombard effect and an automatic noise interference profiling based on deep learning
PublicationThe Lombard effect is a phenomenon that results in speech intelligibility improvement when applied to noise. There are many distinctive features of Lombard speech that were recalled in this dissertation. This work proposes the creation of a system capable of improving speech quality and intelligibility in real-time measured by objective metrics and subjective tests. This system consists of three main components: speech type detection,...
-
Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
PublicationRegarding the unpredictable and complex nature of seismic excitations, there is a need for vulnerability assessment of newly constructed or existing structures. Predicting the seismic limit-state capacity of steel Moment-Resisting Frames (MRFs) can help designers to have a preliminary estimation and improve their views about the seismic performance of the designed structure. This study improved data-driven decision techniques in...
-
Love your mistakes!—they help you adapt to change. How do knowledge, collaboration and learning cultures foster organizational intelligence?
PublicationPurpose: The study aims to determine how the acceptance of mistakes is related to adaptability to change in a broad organizational context. Therefore it explores how knowledge, collaboration, and learning culture (including “acceptance of mistakes”) might help organizations overcome their resistance to change. Methodology: The study uses two sample groups: students aged 18–24 (330 cases) and employees aged >24 (326 cases) who work...
-
A business simulation method in educating architects
PublicationIn this article, the authors analyse the application of the business simulation method as a support tool in educating undergraduate architecture students. While running a fictional architectural practice, students learn about the role of an architect in the investment process and are introduced to economic aspects of running a small practice, including the importance of cash flow. They are also made aware about the importance of...
-
Socioeconomic and gender inequalities in home learning during the COVID-19 pandemic: examining the roles of the home environment, parent supervision, and educational provisions
Publication -
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublicationThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
How does the Relationship Between the Mistakes Acceptance Component of Learning Culture and Tacit Knowledge-Sharing Drive Organizational Agility? Risk as a Moderator
PublicationChanges in the business context create the need to adjust organizational knowledge to new contexts to enable the organizational agile responses to secure competitiveness. Tacit knowledge is strongly contextual. This study is based on the assumption that business context determines tacit knowledge creation and acquisition, and thanks to this, the tacit knowledge-sharing processes support agility. Therefore, this study aims to expose...
-
Statistical Data Pre-Processing and Time Series Incorporation for High-Efficacy Calibration of Low-Cost NO2 Sensor Using Machine Learning
PublicationAir pollution stands as a significant modern-day challenge impacting life quality, the environment, and the economy. It comprises various pollutants like gases, particulate matter, biological molecules, and more, stemming from sources such as vehicle emissions, industrial operations, agriculture, and natural events. Nitrogen dioxide (NO2), among these harmful gases, is notably prevalent in densely populated urban regions. Given...
-
Machine-learning-based precise cost-efficient NO2 sensor calibration by means of time series matching and global data pre-processing
PublicationAir pollution remains a considerable contemporary challenge affecting life quality, the environment, and economic well-being. It encompasses an array of pollutants—gases, particulate matter, biological molecules—emanating from sources such as vehicle emissions, industrial activities, agriculture, and natural occurrences. Nitrogen dioxide (NO2), a harmful gas, is particularly abundant in densely populated urban areas. Given its...
-
Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
PublicationNowadays, due to improvements in seismic codes and computational devices, retrofitting buildings is an important topic, in which, permanent deformation of buildings, known as Residual Interstory Drift Ratio (RIDR), plays a crucial role. To provide an accurate yet reliable prediction model, 32 improved Machine Learning (ML) algorithms were considered using the Python software to investigate the best method for estimating Maximum...
-
Graphical interface adaption for children to explain astronomy proportions and distances
PublicationMobile Science Center is a Polish project that seeks to bring astronomy knowledge to wider social groups through various applications. In its development it is necessary to design a graphical interface that explains a concept that is difficult to assimilate such as spatial proportions and distances. This paper develops a framework to create graphical representations that explain this learning to the target audience of children....
-
Greencoin: prototype of a mobile application facilitating and evidencing pro-environmental behavior of citizens
PublicationAmong many global challenges, climate change is one of the biggest challenges of our times. While it is one of the most devastating problems humanity has ever faced, one question naturally arises: can individuals make a difference? We believe that everyone can contribute and make a difference to the community and lives of others. However, there is still a lack of effective strategies to promote and facilitate pro-environmental...
-
Expedited Metaheuristic-Based Antenna Optimization Using EM Model Resolution Management
PublicationDesign of modern antenna systems heavily relies on numerical opti-mization methods. Their primary purpose is performance improvement by tun-ing of geometry and material parameters of the antenna under study. For relia-bility, the process has to be conducted using full-wave electromagnetic (EM) simulation models, which are associated with sizable computational expendi-tures. The problem is aggravated in the case of global optimization,...
-
Load effect impact on the exploitation of concrete machine foundations used in the gas and oil industry
PublicationMachine foundations is a critical topic in the gas and oil industry, which design and exploitation require extensive technical knowledge. Machine foundations are the constructions which are intended for mounting on it a specific type of machine. The foundation has to transfer dynamic and static load from machine to the ground. The primary difference between machine foundations and building foundations is that the machine foundations...
-
Train the trainer course
PublicationThis chapter presents the concept, evaluation and evaluation results for the train the trainer. This concept of train the trainers is prepared within Workpackage 5 of EU-funded project: MASTER BSR (Erasmus+ Strategic Partnership Programme). Due to the nature of adult learning the content is designed for the use of participatory methods (involved, active). This method uses various techniques of active learning e.g. group work,...
-
Exploration of the Solubility Hyperspace of Selected Active Pharmaceutical Ingredients in Choline- and Betaine-Based Deep Eutectic Solvents: Machine Learning Modeling and Experimental Validation
PublicationDeep eutectic solvents (DESs) are popular green media used for various industrial, pharmaceutical, and biomedical applications. However, the possible compositions of eutectic systems are so numerous that it is impossible to study all of them experimentally. To remedy this limitation, the solubility landscape of selected active pharmaceutical ingredients (APIs) in choline chloride- and betaine-based deep eutectic solvents was...
-
E-Learning as a Factor Optimizing the Amount of Work Time Devoted to Preparing an Exam for Medical Program Students during the COVID-19 Epidemic Situation
Publication -
Spatiotemporal Assessment of Satellite Image Time Series for Land Cover Classification Using Deep Learning Techniques: A Case Study of Reunion Island, France
PublicationCurrent Earth observation systems generate massive amounts of satellite image time series to keep track of geographical areas over time to monitor and identify environmental and climate change. Efficiently analyzing such data remains an unresolved issue in remote sensing. In classifying land cover, utilizing SITS rather than one image might benefit differentiating across classes because of their varied temporal patterns. The aim...
-
High-Performance Machine-Learning-Based Calibration of Low-Cost Nitrogen Dioxide Sensor Using Environmental Parameter Differentials and Global Data Scaling
PublicationAccurate tracking of harmful gas concentrations is essential to swiftly and effectively execute measures that mitigate the risks linked to air pollution, specifically in reducing its impact on living conditions, the environment, and the economy. One such prevalent pollutant in urban settings is nitrogen dioxide (NO2), generated from the combustion of fossil fuels in car engines, commercial manufacturing, and food processing. Its...
-
Rediscovering Automatic Detection of Stuttering and Its Subclasses through Machine Learning—The Impact of Changing Deep Model Architecture and Amount of Data in the Training Set
PublicationThis work deals with automatically detecting stuttering and its subclasses. An effective classification of stuttering along with its subclasses could find wide application in determining the severity of stuttering by speech therapists, preliminary patient diagnosis, and enabling communication with the previously mentioned voice assistants. The first part of this work provides an overview of examples of classical and deep learning...
-
Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance
PublicationWastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP...
-
Robust-adaptive dynamic programming-based time-delay control of autonomous ships under stochastic disturbances using an actor-critic learning algorithm
PublicationThis paper proposes a hybrid robust-adaptive learning-based control scheme based on Approximate Dynamic Programming (ADP) for the tracking control of autonomous ship maneuvering. We adopt a Time-Delay Control (TDC) approach, which is known as a simple, practical, model free and roughly robust strategy, combined with an Actor-Critic Approximate Dynamic Programming (ACADP) algorithm as an adaptive part in the proposed hybrid control...
-
High-quality academic teachers in business school. The case of The University of Gdańsk, Poland
PublicationThe Bologna process, the increasing number of higher education institutions, the mass education and the demographic problems make the quality of education and quality of the academic teachers a subject of wide public debate and concern. The aim of the paper is to identify the most preferred characteristics of a teacher working at a business school. The research problem was: What should a high-quality business school academic teacher...
-
Julita Wasilczuk dr hab.
PeopleBorn on 5th of April, 1965 in Gdansk. In 1987-1991 studied the economics of transport, at the University of Gdansk. At 1993 she started to work at the Faculty of Management and Economics. In 1997 received a PhD at the faculty, in 2006 habilitation at the Faculty of Management, University of Gdansk. Since 2009 Associate Professor at Gdansk University of Technology. In 2010-2012 Associate Professor of Humanistic High School at Gdansk. The...
-
Data governance: Organizing data for trustworthy Artificial Intelligence
PublicationThe rise of Big, Open and Linked Data (BOLD) enables Big Data Algorithmic Systems (BDAS) which are often based on machine learning, neural networks and other forms of Artificial Intelligence (AI). As such systems are increasingly requested to make decisions that are consequential to individuals, communities and society at large, their failures cannot be tolerated, and they are subject to stringent regulatory and ethical requirements....
-
Advantageous conditions of saccharification of lignocellulosic biomass for biofuels generation via fermentation processes
PublicationProcessing of lignocellulosic biomass includes four major unit operations: pre-treatment, hydrolysis, fermentation and product purifcation prior to biofuel generation via anaerobic digestion. The microorganisms involved in the fermentation metabolize only simple molecules, i.e., monosugars which can be obtained by carrying out the degradation of complex polymers, the main component of lignocellulosic biomass. The object of this...
-
Using Isolation Forest and Alternative Data Products to Overcome Ground Truth Data Scarcity for Improved Deep Learning-based Agricultural Land Use Classification Models
PublicationHigh-quality labelled datasets represent a cornerstone in the development of deep learning models for land use classification. The high cost of data collection, the inherent errors introduced during data mapping efforts, the lack of local knowledge, and the spatial variability of the data hinder the development of accurate and spatially-transferable deep learning models in the context of agriculture. In this paper, we investigate...
-
Cleaner energy for sustainable future using hybrid photovoltaics-thermoelectric generators system under non-static conditions using machine learning based control technique
PublicationIn addition to the load demand, the temperature difference between the hot and cold sides of the thermoelectric generator (TEG) module determines the output power for thermoelectric generator systems. Maximum power point tracking (MPPT) control is needed to track the optimal global power point as operating conditions change. The growing use of electricity and the decline in the use of fossil fuels have sparked interest in photovoltaic-TEG...
-
Integrating Statistical and Machine‐Learning Approach for Meta‐Analysis of Bisphenol A‐Exposure Datasets Reveals Effects on Mouse Gene Expression within Pathways of Apoptosis and Cell Survival
PublicationBisphenols are important environmental pollutants that are extensively studied due to different detrimental effects, while the molecular mechanisms behind these effects are less well understood. Like other environmental pollutants, bisphenols are being tested in various experimental models, creating large expression datasets found in open access storage. The meta‐analysis of such datasets is, however, very complicated for various...
-
Application of artificial intelligence into/for control of flexible manufacturing cell
PublicationThe application of artificial intelligence in technological processes control is usually limited. One problem is how to respond to changes in the environment of manufacturing system. A way to overcome the above shortcoming is to use fuzzy logic for representation of the inexact information. In this paper fundamentals of artificial intelligence and fuzzy logic are introduced from a theoretical point of view. Still more the fuzzy...
-
MSRL and the Real-Life Processes of Capturing and Implementing the "Urban Innovation"
PublicationResult of the MSRL workshop, five research projects, reflect on a broader process of exchange of the ideas between the cities, that is occurring in the real life and became one of the driving factors of the urban development nowadays. The objective of the MSRL research - concepts, which help to advance the development of the cities, support the improvement of the quality of urban environment or meet the future challenges, can be...
-
Desirability-based optimization of dual-fuel diesel engine using acetylene as an alternative fuel
Publicationhe study examined the dual-fuel engine performance employing acetylene gas as primary fuel and diesel as pilot fuel. The engine's operational parameters were adjusted using the Box-Behnken design, and the results were recorded. The best operating settings were yielded as 81.25 % engine load, 4.48 lpm acetylene gas flow rate and the compression ratio were 18. At this optimized setting the BTE was 27.1 % and the engine emitted 360...
-
Predicting the Purchase of Electricity Prices for Renewable Energy Sources Based on Polish Power Grids Data Using Deep Learning Models for Controlling Small Hybrid PV Microinstallations
Publication -
Preferred Benchmarking Criteria for Systematic Taxonomy of Embedded Platforms (STEP) in Human System Interaction Systems
PublicationThe rate of progress in the field of Artificial Intelligence (AI) and Machine Learning (ML) has significantly increased over the past ten years and continues to accelerate. Since then, AI has made the leap from research case studies to real production ready applications. The significance of this growth cannot be undermined as it catalyzed the very nature of computing. Conventional platforms struggle to achieve greater performance...
-
Buzz-based honeybee colony fingerprint
PublicationNon-intrusive remote monitoring has its applications in a variety of areas. For industrial surveillance case, devices are capable of detecting anomalies that may threaten machine operation. Similarly, agricultural monitoring devices are used to supervise livestock or provide higher yields. Modern IoT devices are often coupled with Machine Learning models, which provide valuable insights into device operation. However, the data...
-
Cost-Efficient Globalized Parameter Optimization of Microwave Components through Response-Feature Surrogates and Nature-Inspired Metaheuristics
PublicationDesign of contemporary microwave devices predominantly utilizes computational models, including both circuit simulators, and full-wave electromagnetic (EM) evaluation. The latter constitutes the sole generic way of rendering accurate assessment of the system outputs that considers phenomena such as cross-coupling or radiation and dielectric losses. Consequently, for reliability reasons, the final tuning of microwave device parameters...
-
Encouraging pro-environmental behaviour through an educational mobile application: Preliminary insights from early adopters
PublicationThis article aims to explore the extent to which the educational mobile application PULA supports and promotes pro-environmental behaviours, identify the most utilised functionalities by early adopters, and explore the least engaged functionalities. The study employs a quantitative approach based on data collected from the application. The analysis provides a comprehensive understanding of users' experiences and behaviours within...
-
Knowledge management and disaster management in tourism industry
PublicationPurpose – This conceptual paper aims to present the results of the literature analysis devoted to the application of knowledge management and its processes in the situation of a crisis caused by a natural disaster. On the basis of the analysed papers, the theoretical model linking knowledge management and crisis management for the tourism industry has been proposed. Findings - The proposed theoretical model presents the role of...
-
Encouraging Pro-environmental Behaviour Through an Educational Mobile Application: Preliminary Insights from Early Adopters
PublicationThis article aims to explore the extent to which the educational mobile application PULA supports and promotes pro-environmental behaviours, identify the most utilised functionalities by early adopters, and explore the least engaged functionalities. The study employs a quantitative approach based on data collected from the application. The analysis provides a comprehensive understanding of users' experiences and behaviours within...
-
Activation of Metabotropic Glutamate Receptor (mGlu2) and Muscarinic Receptors (M1, M4, and M5), Alone or in Combination, and Its Impact on the Acquisition and Retention of Learning in the Morris Water Maze, NMDA Expression and cGMP Synthesis
PublicationThe Morris water maze (MWM) is regarded as one of the most popular tests for detecting spatial memory in rodents. Long-term potentiation and cGMP synthesis seem to be among the crucial factors involved in this type of learning. Muscarinic (M1, M4, and M5 receptors) and metabotropic glutamate (mGlu) receptors are important targets in the search for antipsychotic drugs with the potency to treat cognitive disabilities associated with...