Search results for: DIMENSIONAL ANALYSIS
-
Composite 2D Material-Based Pervaporation Membranes for Liquid Separation: A Review
PublicationToday, chemistry and nanotechnology cover molecular separations in liquid and gas states by aiding in the design of new nano-sized materials. In this regard, the synthesis and application of two-dimensional (2D) nanomaterials are current fields of research in which structurally defined 2D materials are being used in membrane separation either in self-standing membranes or composites with polymer phases. For instance, pervaporation...
-
A significance of multi slip condition for inclined MHD nano-fluid flow with non linear thermal radiations, Dufuor and Sorrot, and chemically reactive bio-convection effect
PublicationThe aim of this research is to discuss the significance of slip conditions for magnetized nanofluid flow with the impact of nonlinear thermal radiations, activation energy, inclined MHD, sorrot and dufour, and gyrotactic micro motile organisms over continuous stretching of a two-dimensional sheet. The governing equations emerge in the form of partial differential equations. Since the resultant governing differential equations...
-
Multi-fidelity EM simulations and constrained surrogate modelling for low-cost multi-objective design optimisation of antennas
PublicationIn this study, a technique for low-cost multi-objective design optimisation of antenna structures has been proposed. The proposed approach is an enhancement of a recently reported surrogate-assisted technique exploiting variable-fidelity electromagnetic (EM) simulations and auxiliary kriging interpolation surrogate, the latter utilised to produce the initial approximation of the Pareto set. A bottleneck of the procedure for higher-dimensional...
-
If Gravity is Geometry, is Dark Energy just Arithmetic?
PublicationArithmetic operations (addition, subtraction, multiplication, division), as well as the calculus they imply, are non-unique. The examples of four-dimensional spaces, R^4 and (−L/2,L/2)^4, are considered where different types of arithmetic and calculus coexist simultaneously. In all the examples there exists a non-Diophantine arithmetic that makes the space globally Minkowskian, and thus the laws of physics are formulated in terms...
-
Application of Analytic Signal and Smooth Interpolation in Pulse Width Modulation for Conventional Matrix Converters
PublicationThe paper proposes an alternative and novel approach to the PWM duty cycles computation for Conventional Matrix Converters (CMC) fed by balanced, unbalanced or non–sinusoidal AC voltage sources. The presented solution simplifies the prototyping of direct modulation algorithms. PWM duty cycles are calculated faster by the smooth interpolation technique, using only vector coordinates, without trigonometric functions and angles. Both...
-
On geometry parameterization for simulation-driven design closure of antenna structures
PublicationFull-wave electromagnetic (EM) simulation tools have become ubiquitous in antenna design, especially final tuning of geometry parameters. From the reliability standpoint, the recommended realization of EM-driven design is through rigorous numerical optimization. It is a challenging endeavor with the major issues related to the high computational cost of the process, but also the necessity of handling several objectives and constraints...
-
Application of Doubly Connected Dominating Sets to Safe Rectangular Smart Grids
PublicationSmart grids, together with the Internet of Things, are considered to be the future of the electric energy world. This is possible through a two-way communication between nodes of the grids and computer processing. It is necessary that the communication is easy and safe, and the distance between a point of demand and supply is short, to reduce the electricity loss. All these requirements should be met at the lowest possible cost....
-
Modeling an Industrial Revolution: How to Manage Large-Scale, Complex IoT Ecosystems?
PublicationAdvancements around the modern digital industry gave birth to a number of closely interrelated concepts: in the age of the Internet of Things (IoT), System of Systems (SoS), Cyber-Physical Systems (CPS), Digital Twins and the fourth industrial revolution, everything revolves around the issue of designing well-understood, sound and secure complex systems while providing maximum flexibility, autonomy and dynamics. The aim of the...
-
INVESTIGATION OF THE CHARACTERISTICS OF A LOWEMISSION GAS TURBINE COMBUSTION CHAMBER OPERATING ON A MIXTURE OF NATURAL GAS AND HYDROGEN
PublicationT his article is devoted to the investigation of the characteristics of a low-emission gas turbine combustion chamber, which can be used in Floating Production, Storage and Offloading (FPSO) vessels and operates on a mixture of natural gas and hydrogen. A new approach is proposed for modelling the processes of burning out a mixture of natural gas with hydrogen under preliminary mixing conditions in gaseous fuel with an oxidizer...
-
Atomic-Scale Finite-Element Modeling of Elastic Mechanical Anisotropy in Finite-Sized Strained Phosphorene Nanoribbons
PublicationNanoribbons are crucial nanostructures due to their superior mechanical and electrical properties. This paper is devoted to hybrid studies of the elastic mechanical anisotropy of phosphorene nanoribbons whose edges connect the terminals of devices such as bridges. Fundamental mechanical properties, including Young’s modulus, Poisson’s ratio, and density, were estimated from first-principles calculations for 1-layer, 3-layer, and...
-
About Unusual Diffraction and Thermal Self-Action of Magnetosonic Beam
PublicationThe dynamics of slightly diverging two-dimensional beams whose direction forms a constant angle θ with the equilibrium straight magnetic strength is considered. The approximate dispersion relations and corresponding links which specify hydrodynamic perturbations in confined beams are derived. The study is dedicated to the diffraction of a magnetosonic beam and nonlinear thermal self-action of a beam in a thermoconducting gaseous plasma....
-
Molecular hydrogen solvated in water – A computational study
PublicationThe aqueous hydrogen molecule is studied with molecular dynamics simulations at ambient temperature and pressure conditions, using a newly developed flexible and polarizable H2 molecule model. The design and implementation of this model, compatible with an existing flexible and polarizable force field for water, is presented in detail. The structure of the hydration layer suggests that first-shell water molecules accommodate the...
-
On Rapid Design Optimization and Calibration of Microwave Sensors Based on Equivalent Complementary Resonators for High Sensitivity and Low Fabrication Tolerance
PublicationThis paper presents the design, optimization, and calibration of multivariable resonators for mi-crowave dielectric sensors. An optimization technique for circular complementary split ring reso-nator (CC-SRR) and square complementary split ring resonator (SC-SRR) is presented to achieve the required transmission response in a precise manner. The optimized resonators are manufac-tured using a standard photolithographic technique...
-
Double-Blind Reputation vs. Intelligent Fake VIP Attacks in Cloud-Assisted Interactions
PublicationWe consider a generic model of Client-Server interactions in the presence of Sender and Relay, conceptual agents acting on behalf of Client and Server, respectively, and modeling cloud service providers in the envisaged "QoS as a Service paradigm". Client generates objects which Sender tags with demanded QoS level, whereas Relay assigns the QoS level to be provided at Server. To verify an object's right to a QoS level, Relay detects...
-
Investigating Feature Spaces for Isolated Word Recognition
PublicationMuch attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...
-
Recent advances in rapid multiobjective optimization of expensive simulation models in microwave and antenna engineering by Pareto front exploration
PublicationPractical engineering design problems are inherently multiobjective, that is, require simultaneous control of several (and often conflicting) criteria. In many situations, genuine multiobjective optimization is required to acquire comprehensive information about the system of interest. The most popular solution techniques are populationbased metaheuristics, however, they are not practical for handling expensive electromagnetic...
-
Anisotropic mechanical behavior and auxeticity of penta-graphene: Molecular statics/molecular dynamics studies
PublicationWe investigate the mechanical properties of penta-graphene (PG), a recently proposed two-dimensional carbon allotrope using atomistic simulation techniques combined with the empirical description of interatomic interactions. We report on the dependence of its three in-plane mechanical moduli (i.e. Young's modulus, Poisson's ratio and shear modulus) on the deformation direction, strain and temperature. We show that PG displays a...
-
Assembly of 1D Granular Structures from Sulfonated Polystyrene Microparticles
PublicationBeing able to systematically modify the electric properties of nano- and microparticles opens up new possibilities for the bottom-up fabrication of advanced materials such as the fabrication of one-dimensional (1D) colloidal and granular materials. Fabricating 1D structures from individual particles offers plenty of applications ranging from electronic sensors and photovoltaics to artificial flagella for hydrodynamic propulsion....
-
Bearing estimation using double frequency reassignment for a linear passive array
PublicationThe paper demonstrates the use of frequency reassignment for bearing estimation. For this task, signals derived from a linear equispaced passive array are used. The presented method makes use of Fourier transformation based spatial spectrum estimation. It is further developed through the application of two-dimensional reassignment, which leads to obtaining highly concentrated energy distributions in the joint frequency-angle domain...
-
Acceleration of the Discrete Green’s Function Formulation of the FDTD Method Based on Recurrence Schemes
PublicationIn this paper, we investigate an acceleration of the discrete Green's function (DGF) formulation of the FDTD method (DGF-FDTD) with the use of recurrence schemes. The DGF-FDTD method allows one to compute FDTD solutions as a convolution of the excitation with the DGF kernel. Hence, it does not require to execute a leapfrog time-stepping scheme in a whole computational domain for this purpose. Until recently, the DGF generation...
-
A novel in vivo approach to assess strains of the human abdominal wall under known intraabdominal pressure
PublicationThe study concerns mechanical behaviour of a living human abdominal wall. A better mechanical understanding of a human abdominal wall and recognition of its material properties is required to find mechanically compatible surgical meshes to significantly improve the treatment of ventral hernias. A non-invasive methodology, based on in vivo optical measurements is proposed to determine strains of abdominal wall corresponding to...
-
Assessment of particular abdominal aorta section extraction from contrast-enhanced computed tomography angiography
PublicationThe aim of this work is to improve the accuracy of extraction of a particular abdominal aorta section and to reduce the distortion in three-dimensional Computed Tomography Angiography (CTA) images. Imaging modality and quality plays crucial role in the medical diagnostic process, thus ensuring high quality of images is essential at every stage of acquisition and processing.Noise is defined as a disturbance of the image quality...
-
Adaptive Hyperparameter Tuning within Neural Network-based Efficient Global Optimization
PublicationIn this paper, adaptive hyperparameter optimization (HPO) strategies within the efficient global optimization (EGO) with neural network (NN)-based prediction and uncertainty (EGONN) algorithm are proposed. These strategies utilize Bayesian optimization and multiarmed bandit optimization to tune HPs during the sequential sampling process either every iteration (HPO-1itr) or every five iterations (HPO-5itr). Through experiments using...
-
Urban flash flood hazard identification and assessment applying geospatial techniques and hydrodynamic modeling; Erbil city case study, Kurdistan Region of Iraq
PublicationThis dissertation aims to investigate the factors behind flash flooding in Erbil's central district, located in the Kurdistan Region of Iraq, and develop a methodology for assessing flood hazards in the city, despite limited data accessibility. In this thesis, each factor was investigated, including analyzing extreme precipitation events in the last two decades, including their spatial and temporal distribution of rainfall, intensity,...
-
Combining Computational Fluid Dynamics with a Biokinetic Model for Predicting Ammonia and Phosphate Behavior in Aeration Tanks
PublicationThe aim of this study was to use computational fluid dynamics for predicting the behavior of reactive pollutants (ammonia and phosphate) in the aerobic zone of the bioreactor located at the Wschod wastewater treatment plant in Gdansk, Poland. The one-dimensional advection-dispersion equation was combined with simple biokinetic models incorporating the Monod-type expressions as source terms for the two pollutants. The problem was...
-
3,3'-Dibenzoyl-1,1'-dibenzyl-1,1'-(ethane-1,2-diyl)dithiourea
PublicationIn the title compound, C32H30N4O2S2, the carbonyl and thiocarbonyl groups are found in a rare synclinal conformation, with an S-C···C-O pseudo-torsion angle of 62.6(2)°. The molecule has Ci = S2 point-group symmetry with a crystallographic center of inversion located in the middle of the ethylene bridge. One of the symmetry-independent phenyl...
-
From Bioink to Tissue: Exploring Chitosan-Agarose Composite in the Context of Printability and Cellular Behaviour
PublicationThis study presents an innovative method for producing thermosensitive bioink from chitosan hydrogels saturated with carbon dioxide and agarose. It focuses on a detailed characterisation of their physicochemical properties and potential applications in biomedicine and tissue engineering. The ORO test approved the rapid regeneration of the three-dimensional structure of chitosan–agarose composites in a unidirectional bench press...
-
Study on the wear characteristics of a 3D printed tool in flat lapping of Al2O3 ceramic materials
PublicationWidespread and popular use of ceramic products in various industry sectors necessitates the search for methods of their efficient processing. Lapping technology, which enables obtaining high dimensional and shape accuracy and high surface flatness, is one of the basic methods of finishing hard and brittle technical ceramics with a porous structure. This study analyzed the characteristics and wear value of an SLS-printed abrasive...
-
Recent advances of selected passive heat transfer intensification methods for phase change material-based latent heat energy storage units: A review
PublicationThe following article overviews recent studies regarding heat transfer enhancement methods, explicitly focusing on fins and coils utilization, in phase change material-based latent heat thermal energy storage systems. It discusses the influence of various geometrical and material parameters on the melting and solidification processes, as well as the orientation of the heat transfer surface within the storage tank. Additionally,...
-
Vibrational Quenching of Optically Pumped Carbon Dimer Anions
PublicationCareful control of quantum states is a gateway to research in many areas of science such as quantum information, quantum-controlled chemistry, and astrophysical processes. Precise optical control of molecular ions remains a challenge due to the scarcity of suitable level schemes, and direct laser cooling has not yet been achieved for either positive or negative molecular ions. Using a cryogenic wire trap, we show how the internal...
-
3D Metamaterial Ultra-Wideband Absorber for curved surface
PublicationThis paper proposes a three-dimensional metamaterial absorber based on a resistive film patch array to develop a low-cost, lightweight absorber for curved surfaces. An excellent absorption over a large frequency band is achieved through two different yet controllable mechanisms; In the first mechanism, a considerable attenuation in the wave power is achieved via graphite resistive films. The absorption is then intensified through...
-
Antibiotic-sterol interactions provide insight into the selectivity of natural aromatic analogues of amphotericin B and their photoisomers
PublicationAromatic heptaene macrolides (AHMs) belong to the group of polyene macrolide antifungal antibiotics. Members of this group were the first to be used in the treatment of systemic fungal infections. Amphotericin B (AmB), a non-aromatic representative of heptaene macrolides, is of significant clinical importance in the treatment of internal mycoses. It includes the all-trans heptaene chromophore, whereas the native AHMs contain two...
-
Mechanical exfoliation and layer number identification of single crystal monoclinic CrCl3
PublicationAfter the recent finding that CrI3, displays ferromagnetic order down to its monolayer, extensive studies have followed to pursue new two-dimensional (2D) magnetic materials. In this article, we report on the growth of single crystal CrCl3 in the layered monoclinic phase. The system after mechanical exfoliation exhibits stability in ambient air (the degradation occurs on a time scale at least four orders of magnitude longer than...
-
On nonlinear dilatational strain gradient elasticity
PublicationWe call nonlinear dilatational strain gradient elasticity the theory in which the specific class of dilatational second gradient continua is considered: those whose deformation energy depends, in an objective way, on the gradient of placement and on the gradient of the determinant of the gradient of placement. It is an interesting particular case of complete Toupin–Mindlin nonlinear strain gradient elasticity: indeed, in it, the...
-
Human Feedback and Knowledge Discovery: Towards Cognitive Systems Optimization
PublicationCurrent computer vision systems, especially those using machine learning techniques are data-hungry and frequently only perform well when dealing with patterns they have seen before. As an alternative, cognitive systems have become a focus of attention for applications that involve complex visual scenes, and in which conditions may vary. In theory, cognitive applications uses current machine learning algorithms, such as deep learning,...
-
Cavity-expansion approximation for projectile impact and penetration into sand
PublicationA one-dimensional problem of a spherical cavity expanding at a constant velocity from zero initial radius in an infinite granular medium, which has the first-kind self-similar solution, is considered. We are solving this dynamic spherical cavity-expansion problem to model rigid spheres penetrating into a granular media. Elastic–plastic deformation of the granular media is described in a barotropic approximation, using the high-pressure...
-
Detecting Lombard Speech Using Deep Learning Approach
PublicationRobust Lombard speech-in-noise detecting is challenging. This study proposes a strategy to detect Lombard speech using a machine learning approach for applications such as public address systems that work in near real time. The paper starts with the background concerning the Lombard effect. Then, assumptions of the work performed for Lombard speech detection are outlined. The framework proposed combines convolutional neural networks...
-
Effect of free water on the quasi‑static compression behavior of partially‑saturated concrete with a fully coupled DEM/CFD approach.
PublicationThe work aims to numerically investigate the quasi-static response of partially fluid-saturated concrete under two-dimensional uniaxial compression at the mesoscale. We investigated how the impact of free pore fluid content (water and gas) affected the quasi-static strength of concrete. The totally and partially fluid-saturated concrete behavior was simulated using an improved pore-scale hydro-mechanical model based on DEM/CFD....
-
Polaronic and Mott insulating phase of layered magnetic vanadium trihalide VCl3
PublicationTwo-dimensional (2D) van der Waals (vdW) magnetic 3d-transition metal trihalides are a new class of functional materials showing exotic physical properties useful for spintronic and memory storage applications. In this article, we report the synthesis and electromagnetic characterization of single-crystalline vanadium trichloride, VCl 3 , a novel 2D layered vdW Mott insulator, which has a rhombohedral structure (R3, No. 148) at...
-
Selected aspects of two-phase flow studies using different visualization techniques in minichannels
PublicationThe subject of the study is to present the possibility of the use of visualization techniques in the researches on two-phase flows, carried out by the authors for many years. These works included as follows: heat transfer during the flow boiling, boiling crises and condensation in flow. The issue of the heat transfer intensification during the flow boiling through the channels of small diameters was analyzed. All this work focused...
-
Intercalation complex of imidazoacridinone C-1311, a potential anticancer drug, with DNA helix d(CGATCG)2: stereostructural studies by 2D NMR spectroscopy.
PublicationImidazoacridinone C-1311 (Symadex®) is a powerful antitumor agent, which successfully made its way through the Phase I clinical trials and has been recommended for Phase II few a years ago. It has been shown experimentally that during the initial stage of its action C-1311 forms a relatively stable intercalation complex with DNA, yet it has shown no base-sequence specificity while binding to DNA. In this paper, the d(CGATCG)2:C-1311...
-
Influence and development of new kinematic systems in flat surface lapping
PublicationThe face grinding and lapping technology is widely used in the field of the precise and ultraprecise manufacturing. It has become an indispensable technology in the manufacture of many parts. An absence of material restrictions allows machining both metal and non-metallic materials, including technical ceramics [1]. Nowadays there are mainly two kinematic systems in lapping machines [2]. The machining plane-parallel surfaces is...
-
On the internal efficiency of a turbine stage: classical and CFD definitions
PublicationAlmost entire fleet of steam turbines in Poland was designed between 1950 – 1980 with the use of the so-called zero dimensional (0D) calculation tools. For several years, design and modernization of the turbines occur in assistance with the state of the art methods that describe working fluid flow field based on 3D models and CFD codes. This cooperation between 0D and 3D codes requires exchange of overall, integral information...
-
Unveiling the Pool of Metallophores in Native Environments and Correlation with Their Potential Producers
PublicationFor many organisms, metallophores are essential biogenic ligands that ensure metal scavenging and acquisition from their environment. Their identification is challenging in highly organic matter rich environments like peatlands due to low solubilization and metal scarcity and high matrix complexity. In contrast to common approaches based on sample modification by spiking of metal isotope tags, we have developed a two-dimensional...
-
New Complementary Resonator for Permittivity- and Thickness-Based Dielectric Characterization
PublicationThe design of high-performance complementary meta-resonators for microwave sensors featur-ing high sensitivity and consistent evaluation of dielectric materials is challenging. This paper presents the design and implementation of a novel complementary resonator with high sensi-tivity for dielectric substrate characterization based on permittivity and thickness. A comple-mentary crossed arrow resonator (CCAR) is proposed and integrated...
-
The effects of gas exposure on the graphene/AlGaN/GaN heterostructure under UV irradiation
PublicationThis work demonstrates a graphene/AlGaN/GaN sensing device with two-dimensional electron gas (2DEG) toward nitrogen dioxide (NO2), tetrahydrofuran, and acetone detection under UV light irradiation. We propose combining measurements of the DC characteristics with a fluctuation-enhanced sensing method to provide insight into the gas detection mechanisms in the synergistic structure of highly stable GaN and gas-sensitive graphene....
-
Experimental study on the effect of selected sterilization methods on mechanical properties of polylactide FFF specimens
PublicationPurpose: Biodegradable polymers are widely used in personalized medical devices or scaffolds for tissue engineering. The manufacturing process should be finished with sterilization procedure. However, it is not clear how the different sterilization methods have an impact on the mechanical strength of the three-dimensional (3D)-printed parts, such as bone models or personalized mechanical devices. This paper aims to present the...
-
Modeling of lapping plate wear and conditioning in single-sided lapping
PublicationIn order to achieve higher quality on worked surfaces with lower roughness, very high accuracy of shape and dimensions it is crucial to improve conventional finishing technologies and to develop new working principles. Single-sided lapping is one of the most effective planarization technologies and it is determined by a number of factors and boundary conditions. The most significant influence over a dimensional and profile accuracy,...
-
3D Object Shape Reconstruction from Underwater Multibeam Data and Over Ground Lidar Scanning
PublicationThe technologies of sonar and laser scanning are an efficient and widely used source of spatial information with regards to underwater and over ground environment respectively. The measurement data are usually available in the form of groups of separate points located irregularly in three-dimensional space, known as point clouds. This data model has known disadvantages, therefore in many applications a different form of representation,...
-
The effect of imidazolium ionic liquid on the morphology of Pt nanoparticles deposited on the surface of SrTiO3 and photoactivity of Pt–SrTiO3 composite in the H2 generation reaction
PublicationPhotocatalytic water splitting has great potential in solar-hydrogen production as a low-cost and environmentally friendly method. Different unique techniques used to obtain photocatalysts with various modifications to improve H2 generation have been introduced. In the present work, SrTiO3 was successfully synthesized via the solvothermal method in the presence of ionic liquid (IL) - 1-butyl-3-methylimidazolium bromide ([BMIM][Br])...