Search results for: learning with computer
-
Deep Learning Basics 2023/24
e-Learning CoursesA course about the basics of deep learning intended for students of Computer Science. It includes an introduction to supervised machine learning, the architecture of basic artificial neural networks and their training algorithms, as well as more advanced architectures (convolutional networks, recurrent networks, transformers) and regularization and optimization techniques.
-
Webquest- dobra praktyka w e-Learningu
PublicationW dobie informatyzacji i pokonywania barier wdrażania e-technologii na uczelniach wyższych uważa się, że jedną z najczęściej stosowanych aktywizujących technik nauczania wśród nauczycieli akademickich jest metoda projektu (ang. project-based learning). W niniejszym opracowaniu proponuje się zastosowanie w procesie edukacji na wyższej uczelni, metody webquest. Jest ona dużo rzadziej stosowana w praktyce. Opracowano ją w oparciu...
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublicationThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
The evaluation of eGlasses eye tracking module as an extension for Scratch
PublicationIn this paper we present the possibility of using eGlasses eye tracking module as an extension for Scratch programming tool which is a visual programming language supporting computer skills learning. The main concept behind this project is to setup the interface for rapid interaction design. Eye tracking is a powerful tool for hands free communication but for that requires a dedicated software. This software is rarely tailored...
-
Chat GPT Wrote It: What HCI Educators Can Learn from their Students?
PublicationRecently students, teachers, and researchers equally have become impressed by Generative AI (GenAI) tools, with ChatGPT at the top. However, numerous concerns about the GenAI-related threats to academic integrity and the validity of learning outcomes are emerging. This problem is also vivid in Human-Computer Interaction (HCI) education since students can use GenAI tools to rapidly generate ideas, user interface templates, screen...
-
Learning sperm cells part segmentation with class-specific data augmentation
PublicationInfertility affects around 15% of couples worldwide. Male fertility problems include poor sperm quality and low sperm count. The advanced fertility treatment methods like ICSI are nowadays supported by vision systems to assist embryologists in selecting good quality sperm. Computer-Assisted Semen Analysis (CASA) provides quantitative and qualitative sperm analysis concerning concentration, motility, morphology, vitality, and fragmentation....
-
How to Design Affect-aware Educational Systems – the AFFINT Process Approach
PublicationComputer systems, that support learning processes, can adapt to the needs and states of a learner. The adaptation might directly address the knowledge deficits and most tutoring systems apply an adaptable learning path of that kind. Apart from a preliminary knowledge state, there are more factors, that influence education effectiveness and among those there are fluctuating emotional states. The tutoring systems may recognize or...
-
PROPRIETARY SOFTWARE IN TECHNICAL HIGHER EDUCATION
PublicationThe authors present a relatively easy way to extend the quality of education in professional studies (engineering) on major “Geodesy and Cartography”. They indicate the possibility to deepen students’ knowledge by using in the educational process proprietary software enriching education. The authors use their own experiences, results of the cooperation with employers, as well as the effects of scientific research to introduce into...
-
PROPRIETARY SOFTWARE IN TECHNICAL HIGHER EDUCATION
PublicationThe authors present a relatively easy way to extend the quality of education in professional studies (engineering) on major “Geodesy and Cartography”. They indicate the possibility to deepen students’ knowledge by using in the educational process proprietary software enriching education. The authors use their own experiences, results of the cooperation with employers, as well as the effects of scientific research to introduce...
-
Team research project – evolution from faculty activity to university study standard
PublicationThe article will describe the idea of a university-wide team student project as a tool of modern academic teaching in the era of widespread use of artificial intelligence tools. The problem of contemporary teaching is the emerging tools for automatic content generation, including didactic and scientific content. The question arises how to verify students' qualifications and learning outcomes. The solution may be students' group...
-
Podstawy uczenia głębokiego 2022
e-Learning Courses{mlang pl}Kurs podstaw uczenia głębokiego przeznaczony dla studentów kierunku Informatyka.{mlang} {mlang en}This is a course about deep learning basics dedicated for Computer Science students.{mlang}
-
How Can We Identify Electrophysiological iEEG Activities Associated with Cognitive Functions?
PublicationElectrophysiological activities of the brain are engaged in its various functions and give rise to a wide spectrum of low and high frequency oscillations in the intracranial EEG (iEEG) signals, commonly known as the brain waves. The iEEG spectral activities are distributed across networks of cortical and subcortical areas arranged into hierarchical processing streams. It remains a major challenge to identify these activities in...
-
Music information retrieval—The impact of technology, crowdsourcing, big data, and the cloud in art.
PublicationThe exponential growth of computer processing power, cloud data storage, and crowdsourcing model of gathering data bring new possibilities to music information retrieval (mir) field. Mir is no longer music content retrieval only; the area also comprises the discovery of expressing feelings and emotions contained in music, incorporating other than hearing modalities for helping this issue, users’ profiling, merging music with social...
-
Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier
PublicationIn recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia....
-
Classification of Sea Going Vessels Properties Using SAR Satellite Images
PublicationThe aim of the project was to analyze the possibility of using machine learning and computer vision to identify (indicate the location) of all sea-going vessels located in the selected area of the open sea and to classify the main attributes of the vessel. The key elements of the project were to download data from the Sentinel-1 satellite [1], download data on the sea vessels [2], then automatically tag data and develop a detection...
-
A Novel Spatio–Temporal Deep Learning Vehicle Turns Detection Scheme Using GPS-Only Data
PublicationWhether the computer is driving your car or you are, advanced driver assistance systems (ADAS) come into play on all levels, from weather monitoring to safety. These modern-day ADASs use various assisting tools for drivers to keep the journey safe; these sophisticated tools provide early signals of numerous events, such as road conditions, emerging traffic scenarios, and weather warnings. Many urban applications, such as car-sharing...
-
BETWEEN IDEA AND INTERPRETATION - DESIGN PROCESS AUGMENTATION
PublicationThe following paper investigates the idea of reducing the human digital intervention to a minimum during the advanced design process. Augmenting the outcome attributes beyond the designer's capabilities by computational design methods, data collection, data computing and digital fabrication, altogether imitating the human design process. The primary technical goal of the research was verification of restrictions and abilities used...
-
Smart Knowledge Engineering for Cognitive Systems: A Brief Overview
PublicationCognition in computer sciences refers to the ability of a system to learn at scale, reason with purpose, and naturally interact with humans and other smart systems, such as humans do. To enhance intelligence, as well as to introduce cognitive functions into machines, recent studies have brought humans into the loop, turning the system into a human–AI hybrid. To effectively integrate and manipulate hybrid knowledge, suitable technologies...
-
Machine Learning Algorithm-Based Tool and Digital Framework for Substituting Daylight Simulations In Early- Stage Architectural Design Evaluation
PublicationThe aim of this paper is to examine the new method of obtaining the simulation-based results using backpropagation of errors artificial neural networks. The primary motivation to conduct the research was to determine an alternative, more efficient and less timeconsuming method which would serve to achieve the results of daylight simulations. Three daylight metrics: Daylight Factor, Daylight Autonomy and Daylight Glare Probability have...
-
Keystroke Dynamics Patterns While Writing Positive and Negative Opinions
PublicationThis paper deals with analysis of behavioural patterns in human–computer interaction. In the study, keystroke dynamics were analysed while participants were writing positive and negative opinions. A semi-experiment with 50 participants was performed. The participants were asked to recall the most negative and positive learning experiences (subject and teacher) and write an opinion about it. Keystroke dynamics were captured and...
-
Towards Scalable Simulation of Federated Learning
PublicationFederated learning (FL) allows to train models on decentralized data while maintaining data privacy, which unlocks the availability of large and diverse datasets for many practical applications. The ongoing development of aggregation algorithms, distribution architectures and software implementations aims for enabling federated setups employing thousands of distributed devices, selected from millions. Since the availability of...
-
Anita Maria Dąbrowicz-Tlałka dr
PeopleAnita Dąbrowicz-Tlałka graduated from the Faculty of Mathematics and Physics at the University of Gdańsk with an outstanding grade, having written her thesis in the field of geometric topology. She concurrently obtained a diploma in Postgraduate Studies in the Basics of Computer Science at the University of Gdańsk. In 2001 she received a Ph.D. degree in mathematical studies at the Poznań University of Technology after defending...
-
CMGNet: Context-aware middle-layer guidance network for salient object detection
PublicationSalient object detection (SOD) is a critical task in computer vision that involves accurately identifying and segmenting visually significant objects in an image. To address the challenges of gridding issues and feature...
-
Artificial intelligence for software development — the present and the challenges for the future
PublicationSince the time when first CASE (Computer-Aided Software Engineering) methods and tools were developed, little has been done in the area of automated creation of code. CASE tools support a software engineer in creation the system structure, in defining interfaces and relationships between software modules and, after the code has been written, in performing testing tasks on different levels of detail. Writing code is still the task...
-
Identification of the Contamination Source Location in the Drinking Water Distribution System Based on the Neural Network Classifier
PublicationThe contamination ingression to the Water Distribution System (WDS) may have a major impact on the drinking water consumers health. In the case of the WDS contamination the data from the water quality sensors may be efficiently used for the appropriate disaster management. In this paper the methodology based on the Learning Vector Quantization (LVQ) neural network classifier for the identification of the contamination source location...
-
Application of Wavelet Transform and Fractal Analysis for Esophageal pH-Metry to Determine a New Method to Diagnose Gastroesophageal Reflux Disease
PublicationIn this paper, a new method for analysing gastroesophageal reflux disease (GERD) is shown. This novel method uses wavelet transform (WT) and wavelet-based fractal analysis (WBFA) on esophageal pH-metry measurements. The esophageal pH-metry is an important diagnostic tool supporting the physician’s work in diagnosing some forms of reflux diseases. Interpreting the results of 24-h pH-metry monitoring is time-consuming, and the conclusions...
-
Voice command recognition using hybrid genetic algorithm
PublicationAbstract: Speech recognition is a process of converting the acoustic signal into a set of words, whereas voice command recognition consists in the correct identification of voice commands, usually single words. Voice command recognition systems are widely used in the military, control systems, electronic devices, such as cellular phones, or by people with disabilities (e.g., for controlling a wheelchair or operating a computer...
-
Collaborative Data Acquisition and Learning Support
PublicationWith the constant development of neural networks, traditional algorithms relying on data structures lose their significance as more and more solutions are using AI rather than traditional algorithms. This in turn requires a lot of correctly annotated and informative data samples. In this paper, we propose a crowdsourcing based approach for data acquisition and tagging with support for Active Learning where the system acts as an...
-
Machine learning applied to acoustic-based road traffic monitoring
PublicationThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets
PublicationThis paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of...
-
Instrument detection and pose estimation with rigid part mixtures model in video-assisted surgeries
PublicationLocalizing instrument parts in video-assisted surgeries is an attractive and open computer vision problem. A working algorithm would immediately find applications in computer-aided interventions in the operating theater. Knowing the location of tool parts could help virtually augment visual faculty of surgeons, assess skills of novice surgeons, and increase autonomy of surgical robots. A surgical tool varies in appearance due to...
-
Real-Time Sensor-Based Human Activity Recognition for eFitness and eHealth Platforms
PublicationHuman Activity Recognition (HAR) plays an important role in the automation of various tasks related to activity tracking in such areas as healthcare and eldercare (telerehabilitation, telemonitoring), security, ergonomics, entertainment (fitness, sports promotion, human–computer interaction, video games), and intelligent environments. This paper tackles the problem of real-time recognition and repetition counting of 12 types of...
-
A Review of Emotion Recognition Methods Based on Data Acquired via Smartphone Sensors
PublicationIn recent years, emotion recognition algorithms have achieved high efficiency, allowing the development of various affective and affect-aware applications. This advancement has taken place mainly in the environment of personal computers offering the appropriate hardware and sufficient power to process complex data from video, audio, and other channels. However, the increase in computing and communication capabilities of smartphones,...
-
Multiple Cues-Based Robust Visual Object Tracking Method
PublicationVisual object tracking is still considered a challenging task in computer vision research society. The object of interest undergoes significant appearance changes because of illumination variation, deformation, motion blur, background clutter, and occlusion. Kernelized correlation filter- (KCF) based tracking schemes have shown good performance in recent years. The accuracy and robustness of these trackers can be further enhanced...
-
INVESTIGATION OF THE LOMBARD EFFECT BASED ON A MACHINE LEARNING APPROACH
PublicationThe Lombard effect is an involuntary increase in the speaker’s pitch, intensity, and duration in the presence of noise. It makes it possible to communicate in noisy environments more effectively. This study aims to investigate an efficient method for detecting the Lombard effect in uttered speech. The influence of interfering noise, room type, and the gender of the person on the detection process is examined. First, acoustic parameters...
-
MACHINE LEARNING–BASED ANALYSIS OF ENGLISH LATERAL ALLOPHONES
PublicationAutomatic classification methods, such as artificial neural networks (ANNs), the k-nearest neighbor (kNN) and selforganizing maps (SOMs), are applied to allophone analysis based on recorded speech. A list of 650 words was created for that purpose, containing positionally and/or contextually conditioned allophones. For each word, a group of 16 native and non-native speakers were audio-video recorded, from which seven native speakers’...
-
Application of creative problem-solving methods in remote learning. Bibliometric analysis
Publication -
Patryk Ziółkowski dr inż.
PeopleAssistant Professor at Gdansk Tech. He participated in international projects, including projects for the Ministry of Transportation of the State of Alabama (2015), he is also the winner of a grant from the Kosciuszko Foundation for conducting research in the USA, which he completed in 2018. An expert in the field of artificial intelligence. His main area of research interest is the application of artificial intelligence in Civil...
-
Speaker Recognition Using Convolutional Neural Network with Minimal Training Data for Smart Home Solutions
PublicationWith the technology advancements in smart home sector, voice control and automation are key components that can make a real difference in people's lives. The voice recognition technology market continues to involve rapidly as almost all smart home devices are providing speaker recognition capability today. However, most of them provide cloud-based solutions or use very deep Neural Networks for speaker recognition task, which are...
-
Multiplicative Long Short-Term Memory with Improved Mayfly Optimization for LULC Classification
PublicationLand Use and Land Cover (LULC) monitoring is crucial for global transformation, sustainable land control, urban planning, urban growth prediction, and the establishment of climate regulations for long-term development. Remote sensing images have become increasingly important in many environmental planning and land use surveys in recent times. LULC is evaluated in this research using the Sat 4, Sat 6, and Eurosat datasets. Various...
-
Measurement of the Development of a Learning IT Organization Supported by a Model of Knowledge Acquisition and Processing
PublicationThe paper presents a model of knowledge acquisition and processing for the development of learning organizations. The theory of a learning organization provides neither metrics nor tools to measure its development The authors' studies in this field are based on their experience gathered after projects realized in real IT organizations. The authors have described the construction of the model and the methods of its verification...
-
University Students’ Research on Artificial Intelligence and Knowledge Management. A Review and Report of Multi-case Studies
PublicationLeading technologies are very attractive for students preparing their theses as the completion of their studies. Such an orientation of students connected with professional experiences seems to be a crucial motivator in the research in the management and business areas where these technologies condition the development of professional activities. The goal of the paper is the analysis of students’ thesis topics defended in the last...
-
An Adversarial Machine Learning Approach on Securing Large Language Model with Vigil, an Open-Source Initiative
PublicationSeveral security concerns and efforts to breach system security and prompt safety concerns have been brought to light as a result of the expanding use of LLMs. These vulnerabilities are evident and LLM models have been showing many signs of hallucination, repetitive content generation, and biases, which makes them vulnerable to malicious prompts that raise substantial concerns in regard to the dependability and efficiency of such...
-
Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance
PublicationMachine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience...
-
A Survey on the Datasets and Algorithms for Satellite Data Applications
PublicationThis survey compiles insights and describes datasets and algorithms for applications based on remote sensing. The goal of this review is twofold: datasets review for particular groups of tasks and high-level steps of data flow between satellite instruments and end applications from an implementation and development perspective. The article outlines the generalized data processing pipelines, taking into account the variations in...
-
Remote measurement of building usable floor area - Algorithms fusion
PublicationRapid changes that are taking place in the urban environment have significant impact on urban growth. Most cities and urban regions all over the world compete to increase resident and visitor satisfaction. The growing requirements and rapidity of introducing new technologies to all aspects of residents' lives force cities and urban regions to implement "smart cities" concepts in their activities. Real estate is one of the principal...
-
Machine learning techniques combined with dose profiles indicate radiation response biomarkers
Publication -
Topological-numerical analysis of a two-dimensional discrete neuron model
PublicationWe conduct computer-assisted analysis of a two-dimensional model of a neuron introduced by Chialvo in 1995 [Chaos, Solitons Fractals 5, 461–479]. We apply the method of rigorous analysis of global dynamics based on a set-oriented topological approach, introduced by Arai et al. in 2009 [SIAM J. Appl. Dyn. Syst. 8, 757–789] and improved and expanded afterward. Additionally, we introduce a new algorithm to analyze the return times...
-
Redefining brain tumor segmentation: a cutting-edge convolutional neural networks-transfer learning approach
Publication -
Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
PublicationOne of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was...