Filters
total: 31354
-
Catalog
displaying 1000 best results Help
Search results for: image-based classification
-
seafloor characterisation combined approach using multibeam sonar echo signal processing and image analysis
PublicationThe authors propose the approach to seafloor characterisation which relies on the combined, concurrent use of two different techniques: (i) multibeam sonar image analysis and (ii) multibeam seabed echoes processing. The first technique is based on constructing the grey-level sonar images of the seabed extracted from the echoes received in the consecutive soundings. Then, the set of parameters describing the local region of sonar...
-
Analyzing the Impact of Simulated Multispectral Images on Water Classification Accuracy by Means of Spectral Characteristics
PublicationRemote sensing is widely applied in examining the parameters of the state and quality of water. Spectral characteristics of water are strictly connected with the dispersion of electromagnetic radiation by suspended matter and the absorp-tion of radiation by water and chlorophyll a and b.Multispectral sensor ALI has bands within the ranges of electromagnetic radia-tion: blue and infrared, absent in sensors such as Landsat, SPOT,...
-
BIG DATA SIGNIFICANCE IN REMOTE MEDICAL DIAGNOSTICS BASED ON DEEP LEARNING TECHNIQUES
PublicationIn this paper we discuss the evaluation of neural networks in accordance with medical image classification and analysis. We also summarize the existing databases with images which could be used for training deep models that can be later utilized in remote home-based health care systems. In particular, we propose methods for remote video-based estimation of patient vital signs and other health-related parameters. Additionally, potential...
-
Seafloor characterisation using multibeam sonar echo signal processing and image analysis
PublicationThe authors propose the approach to multibeam seafloor characterisation which relies on the combined, concurrent use of two different techniques of multibeam sonar data processing. The first one is based on constructing the grey-level sonar images of seabed using the echoes received in the consecutive beams. Then, the parameters describing the local region of sonar image, namely, the local standard deviation of a grey level, and...
-
ColorNephroNet: Kidney tumor malignancy prediction using medical image colorization
PublicationRenal tumor malignancy classification is one of the crucial tasks in urology, being a primary factor included in the decision of whether to perform kidney removal surgery (nephrectomy) or not. Currently, tumor malignancy prediction is determined by the radiological diagnosis based on computed tomography (CT) images. However, it is estimated that up to 16% of nephrectomies could have been avoided because the tumor that had been...
-
Andrzej Czyżewski prof. dr hab. inż.
PeopleProf. zw. dr hab. inż. Andrzej Czyżewski jest absolwentem Wydziału Elektroniki PG (studia magisterskie ukończył w 1982 r.). Pracę doktorską na temat związany z dźwiękiem cyfrowym obronił z wyróżnieniem na Wydziale Elektroniki PG w roku 1987. W 1992 r. przedstawił rozprawę habilitacyjną pt.: „Cyfrowe operacje na sygnałach fonicznych”. Jego kolokwium habilitacyjne zostało przyjęte jednomyślnie w czerwcu 1992 r. w Akademii Górniczo-Hutniczej...
-
How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image
PublicationThis study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation...
-
Seafloor characterisation using multibeam data: sonar image properties, seabed surface properties and echo properties
PublicationIn the paper, the approach to seafloor characterisation is presented. The multibeam sonars, besides their well verified and widely used applications like high resolution bathymetry and underwater object detection and imaging, are also the promising tool in seafloor characterization and classification, having several advantages over conventional single beam echosounders. The proposed approach relies on the combined, concurrent use...
-
Automatic classification and mapping of the seabed using airborne LiDAR bathymetry
PublicationShallow coastal areas are among the most inhabited areas and are valuable for biodiversity, recreation and the economy. Due to climate change and sea level rise, sustainable management of coastal areas involves extensive exploration, monitoring, and protection. Current high-resolution remote sensing methods for monitoring these areas include bathymetric LiDAR. Therefore, this study presents a novel methodological approach to assess...
-
Interpretable deep learning approach for classification of breast cancer - a comparative analysis of multiple instance learning models
PublicationBreast cancer is the most frequent female cancer. Its early diagnosis increases the chances of a complete cure for the patient. Suitably designed deep learning algorithms can be an excellent tool for quick screening analysis and support radiologists and oncologists in diagnosing breast cancer.The design of a deep learning-based system for automated breast cancer diagnosis is not easy due to the lack of annotated data, especially...
-
Beata Krawczyk-Bryłka dr
PeoplePsycholog, doktor nauk humanistycznych w dziedzinie zarządzania, adiunkt w Katedrze przedsiębiorczości. 2018 - 2021: Kierownik projektu NCN: „Efektuacyjny model zespołu przedsiębiorczego. Jak działają przedsiębiorcze zespoły odnoszące sukces" od 2016: Quality Standards Lead filaru People management & personal development na studiach MBA Politechniki Gdańskiej 2008 – 2012: Prodziekan ds kształcenia Wzydziału Zarządzania i Ekonomii...
-
Predicting emotion from color present in images and video excerpts by machine learning
PublicationThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
Fusion-based Representation Learning Model for Multimode User-generated Social Network Content
PublicationAs mobile networks and APPs are developed, user-generated content (UGC), which includes multi-source heterogeneous data like user reviews, tags, scores, images, and videos, has become an essential basis for improving the quality of personalized services. Due to the multi-source heterogeneous nature of the data, big data fusion offers both promise and drawbacks. With the rise of mobile networks and applications, UGC, which includes...
-
Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy
PublicationThe diabetic retinopathy is a disease caused by long-standing diabetes. Lack of effective treatment can lead to vision impairment and even irreversible blindness. The disease can be diagnosed by examining digital color fundus photographs of retina. In this paper we propose deep learning approach to automated diabetic retinopathy screening. Deep convolutional neural networks (CNN) - the most popular kind of deep learning algorithms...
-
Improving automatic surveillance by sound analysis
PublicationAn automatic surveillance system, based on event detection in the video image can be improved by implementing algorithms for audio analysis. Dangerous or illegal actions are often connected with distinctive sound events like screams or sudden bursts of energy. A method for detection and classification of alarming sound events is presented. Detection is based on the observation of sudden changes in sound level in distinctive sub-bands...
-
DIAGNOSIS OF MALIGNANT MELANOMA BY NEURAL NETWORK ENSEMBLE-BASED SYSTEM UTILISING HAND-CRAFTED SKIN LESION FEATURES
PublicationMalignant melanomas are the most deadly type of skin cancer but detected early have high chances for successful treatment. In the last twenty years, the interest of automated melanoma recognition detection and classification dynamically increased partially because of public datasets appearing with dermatoscopic images of skin lesions. Automated computer-aided skin cancer detection in dermatoscopic images is a very challenging task...
-
Systematic approach to binary classification of images in video streams using shifting time windows
Publicationin the paper, after pointing out of realistic recordings and classifications of their frames, we propose a new shifting time window approach for improving binary classifications. We consider image classification in tewo steps. in the first one the well known binary classification algorithms are used for each image separately. In the second step the results of the previous step mare analysed in relatively short sequences of consecutive...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublicationRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Feature Weighted Attention-Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images
PublicationIn remote sensing images, change detection (CD) is required in many applications, such as: resource management, urban expansion research, land management, and disaster assessment. Various deep learning-based methods were applied to satellite image analysis for change detection, yet many of them have limitations, including the overfitting problem. This research proposes the Feature Weighted Attention (FWA) in Bidirectional Long...
-
Seafloor Characterisation Using Underwater Acoustic Devices
PublicationThe problem of seafloor characterisation is important in the context of management as well as investigation and protection of the marine environment. In the first part of the paper, a review of underwater acoustic technology and methodology used in seafloor characterisation is presented. It consists of the techniques based on the use of singlebeam echosounders and seismic sources, along with those developed for the use of sidescan...
-
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublicationThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
Economical methods for measuring road surface roughness
PublicationTwo low-cost methods of estimating the road surface condition are presented in the paper, the first one based on the use of accelerometers and the other on the analysis of images acquired from cameras installed in a vehicle. In the first method, miniature positioning and accelerometer sensors are used for evaluation of the road surface roughness. The device designed for installation in vehicles is composed of a GPS receiver and...
-
Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
PublicationDeployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...
-
Potential and Use of the Googlenet Ann for the Purposes of Inland Water Ships Classification
PublicationThis article presents an analysis of the possibilities of using the pre-degraded GoogLeNet artificial neural network to classify inland vessels. Inland water authorities monitor the intensity of the vessels via CCTV. Such classification seems to be an improvement in their statutory tasks. The automatic classification of the inland vessels from video recording is a one of the main objectives of the Automatic Ship Recognition and...
-
Distributed Framework for Visual Event Detection in Parking Lot Area
PublicationThe paper presents the framework for automatic detection of various events occurring in a parking lot basing on multiple camera video analysis. The framework is massively distributed, both in the logical and physical sense. It consists of several entities called node stations that use XMPP protocol for internal communication and SRTP protocol with Jingle extension for video streaming. Recognized events include detecting parking...
-
Evaluation of a company’s image on social media using the Net Sentiment Rate
PublicationVast amounts of new types of data are constantly being created as a result of dynamic digitization in all areas of our lives. One of the most important and valuable categories for business is data from social networks such as Facebook. Feedback resulting from the sharing of thoughts and emotions, expressed in comments on various products and services, is becoming the key factor on which modern business is based. This feedback is...
-
Multi-Aspect Quality Assessment Of Mobile Image Classifiers For Companion Applications In The Publishing Sector
PublicationThe paper presents the problem of quality assessment of image classifiers used in mobile phones for complimentary companion applications. The advantages of using this kind of applications have been described and a Narrator on Demand (NoD) functionality has been described as one of the examples, where the application plays an audio file related to a book page that is physically in front of the phone's camera. For such a NoD application,...
-
Real-Time Facial Features Detection from Low Resolution Thermal Images with Deep Classification Models
PublicationDeep networks have already shown a spectacular success for object classification and detection for various applications from everyday use cases to advanced medical problems. The main advantage of the classification models over the detection models is less time and effort needed for dataset preparation, because classification networks do not require bounding box annotations, but labels at the image level only. Yet, after passing...
-
On the Role of Polarimetric Decomposition and Speckle Filtering Methods for C-Band SAR Wetland Classification Purposes
PublicationPrevious wetlands studies have thoroughly verified the usefulness of data from synthetic aperture radar (SAR) sensors in various acquisition modes. However, the effect of the processing parameters in wetland classification remains poorly explored. In this study, we investigated the influence of speckle filters and decomposition methods with different combinations of filter and decomposition windows sizes on classification accuracy....
-
How to Sort Them? A Network for LEGO Bricks Classification
PublicationLEGO bricks are highly popular due to the ability to build almost any type of creation. This is possible thanks to availability of multiple shapes and colors of the bricks. For the smooth build process the bricks need to properly sorted and arranged. In our work we aim at creating an automated LEGO bricks sorter. With over 3700 different LEGO parts bricks classification has to be done with deep neural networks. The question arises...
-
Seafloor Characterisation and Imaging Using Multibeam Sonar Data
PublicationThe approach to seafloor characterisation and imaging is presented. It relies on the combined, concurrent use of several techniques of multibeam sonar data processing. The first one is based on constructing the grey-level sonar images of seabed using the backscattering strength calculated for the echoes received in the consecutive beams. Then, the set of parameters describing the local region of sonar image is calculated. The second...
-
Agnieszka Mikołajczyk-Bareła dr inż.
People -
Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks
PublicationThe presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods....
-
An Overview of the Development of a Real-Time System for Endoscopic Video Classification
PublicationThe article presents the results of improving endoscopic image classification algorithms in an effort towards applying them in a real-time diagnosis supporting system. Methods for the detection and removal of personal data are presented and discussed. The currently developed recognition algorithms have been improved in terms of accuracy and performance to make them suitable for a real-life implementation. Their test results are...
-
Melanoma skin cancer detection using mask-RCNN with modified GRU model
PublicationIntroduction: Melanoma Skin Cancer (MSC) is a type of cancer in the human body; therefore, early disease diagnosis is essential for reducing the mortality rate. However, dermoscopic image analysis poses challenges due to factors such as color illumination, light reflections, and the varying sizes and shapes of lesions. To overcome these challenges, an automated framework is proposed in this manuscript. Methods: Initially, dermoscopic...
-
Computed aided system for separation and classification of the abnormal erythrocytes in human blood
PublicationThe human peripheral blood consists of cells (red cells, white cells, and platelets) suspended in plasma. In the following research the team assessed an influence of nanodiamond particles on blood elements over various periods of time. The material used in the study consisted of samples taken from ten healthy humans of various age, different blood types and both sexes. The markings were leaded by adding to the blood unmodified...
-
Deep neural networks approach to skin lesions classification — A comparative analysis
PublicationThe paper presents the results of research on the use of Deep Neural Networks (DNN) for automatic classification of the skin lesions. The authors have focused on the most effective kind of DNNs for image processing, namely Convolutional Neural Networks (CNN). In particular, three kinds of CNN were analyzed: VGG19, Residual Networks (ResNet) and the hybrid of VGG19 CNN with the Support Vector Machine (SVM). The research was carried...
-
On Algorithm Details in Multibeam Seafloor Classification
PublicationRemote sensing of the seafloor constitutes an important topic in exploration, management, protection and other investigations of the marine environment. In the paper, a combined approach to seafloor characterisation is presented. It relies on calculation of several descriptors related to seabed type using three different types of multibeam sonar data obtained during seafloor sensing, viz.: 1) the grey-level sonar images (echograms)...
-
Deep neural networks for data analysis
e-Learning CoursesThe aim of the course is to familiarize students with the methods of deep learning for advanced data analysis. Typical areas of application of these types of methods include: image classification, speech recognition and natural language understanding. Celem przedmiotu jest zapoznanie studentów z metodami głębokiego uczenia maszynowego na potrzeby zaawansowanej analizy danych. Do typowych obszarów zastosowań tego typu metod należą:...
-
Mask Detection and Classification in Thermal Face Images
PublicationFace masks are recommended to reduce the transmission of many viruses, especially SARS-CoV-2. Therefore, the automatic detection of whether there is a mask on the face, what type of mask is worn, and how it is worn is an important research topic. In this work, the use of thermal imaging was considered to analyze the possibility of detecting (localizing) a mask on the face, as well as to check whether it is possible to classify...
-
A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification
PublicationThe article concerns the automation of vessel movement anomaly detection for maritime and coastal traffic safety services. Deep Learning techniques, specifically Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the form of a grayscale image, were generated. 1458 convolutional neural networks with...
-
The effect of impacted third molars on second molar external root resorption, a cross-sectional cone beam computed tomography study
PublicationBackground: Third molars have the highest prevalence of impaction in teeth and can cause pathological damage on the adjacent second molars. This study aims to evaluate the effects of factors related to impacted third molars on external root resorption (ERR) in adjacent second molars using cone-beam computed tomography (CBCT). Material and Methods: In CBCTs, the effect of impacted third molars on the root surface of adjacent second...
-
Karol Flisikowski dr inż.
PeopleKarol Flisikowski works as Associate Professor at the Department of Statistics and Econometrics, Faculty of Management and Economics, Gdansk University of Technology. He is responsible for teaching descriptive and mathematical statistics (in Polish and English), as well as scientific research in the field of social statistics. He has been a participant in many national and international conferences, where he has presented the results...
-
LEGO bricks for training classification network
Open Research DataThe data set contains images of 447 different classes of LEGO bricks used for training LEGO bricks classification network. The dataset contains two types of images: photos (10%) and renders (90%) aggregated into respective directories. Each directory (photos and renders) contains 447 directories labeled as the official brick type number. The images...
-
Marta Kuc-Czarnecka dr
PeopleMarta Kuc-Czarnecka is the deputy head of the Department of Statistics and Economics at the Faculty of Management and Economics of the Gdańsk University of Technology. She also serves as the Dean's proxy for AMBA accreditation. She is a co-founder of Rethinking Economics Gdańsk and a member of the Foundation Edward Lipiński for the promotion of pluralism in economic sciences. In 2018-2022, she was Eurofound’s quality of life and...
-
Surface EMG-based signal acquisition for decoding hand movements
Open Research DataBiosignal processing plays a crucial role in modern hand prosthetics. The challenge is to restore functionality of a lost limb based on the signals acquired from the surface of the stump. The number of sensors (emg channels) used for signal acquisition influence the quality of a prosthetic hand. Modern algorithms (including neural networks) can significantly...
-
Efficiency comparison of selected endoscopic video analysis algorithms
PublicationIn the paper, selected image analysis algorithms were examined and compared in the task of identifying informative frames, blurry frames, colorectal cancer and healthy tissue on endoscopic videos. In order to standardize the tests, the algorithms were modified by removing from them parts responsible for the classification, and replacing them with Support Vector Machines and Artificial Neural Networks. The tests were performed in...
-
Paweł Burdziakowski dr inż.
PeoplePaweł Burdziakowski, PhD, is a professional in low-altitude aerial photogrammetry and remote sensing, marine and aerial navigation. He is also a licensed flight instructor and software developer. His main areas of interest are digital photogrammetry, navigation of unmanned platforms and unmanned systems, including aerial, surface, underwater. He conducts research in algorithms and methods to improve the quality of spatial measurements...
-
Hanna Obracht-Prondzyńska dr inż. arch.
PeopleHanna Obracht-Prondzyńska, PhD MArch, Eng. Assistant Professor at the University of Gdańsk, Department of Spatial Management, academic teacher of urban design and spatial data analyses. Architect and urban planner experienced in data driven urban design and planning. She defended her PhD with distinction in engineering and technical sciences in the discipline of architecture and urban planning in 2020 at the Faculty of Architecture...
-
Explainable machine learning for diffraction patterns
PublicationSerial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...