Search results for: SINGLE-WALLED CARBON NANOTUBES (SWCNTS)
-
New Method of Non-Linear Electrochemical Impedance Spectroscopy with an Amplitude-Modulated Perturbation Signal
PublicationThe paper presents a new method of non-linear electrochemical impedance spectroscopy (NLEIS), which allows fast and nondestructive evaluation of the corrosion rate and determination of the Tafel coefficients values for a corrosion system under investigation. This method employs amplitude modulation of the ac perturbation signal. The study demonstrated that it was possible to obtain impedance characteristic as a function of the...
-
Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries
PublicationHere, we report the synthesis of hard carbon materials (RH) made from natural rice husk through a single pyrolysis process and their application as an anode in sodium-ion batteries. The studies show that the electrochemical properties of RHs are affected by the treatment temperatures, which determine the materials morphology, in particular, their degree of graphitization and extent of continuous channels (nanovoids). The latter...
-
Nanostructured biocatalysis for biotechnological applications
PublicationThe purpose immobilization process is to enhance the performance of an enzyme for commercial processes. A large number of structures have been reported in the literature to boost the effectiveness of immobilized enzymes. The nanomaterials have the optimal properties for equilibrating key parameters that govern the performance of biocatalysts, such as high enzyme loading ability, specific surface area, and mass transfer resistance....
-
Double ZIF-L structures with exceptional CO2 capacity
PublicationCarbon dioxide emission is an emerging problem nowadays and new methods are designed for its control. In this article, a report on the formation of zeolitic imidazole framework with an apparent double leaf-like morphology DZIF-L is given. The special structure of the materials prevents from aggregation of the particles providing remarkable CO2 capacity. At 0.1 MPa the CO2 uptake was 2.99 ± 0.06 mmol/g. The capacity of synthesized...
-
Influence of Surface Modification of Titanium and Its Alloys for Medical Implants on Their Corrosion Behavior
PublicationTitanium and its alloys are often used for long-term implants after their surface treatment. Such surface modification is usually performed to improve biological properties but seldom to increase corrosion resistance. This paper presents research results performed on such metallic materials modified by a variety of techniques: direct voltage anodic oxidation in the presence of fluorides, micro-arc oxidation (MAO), pulse laser treatment,...
-
Synthesis and modification of reduced graphene oxide aerogels for biofuel cell applications
PublicationWe have carried out the preparation of reduced graphene oxide aerogels using eco-friendly method that is based on the Hummers method of graphite oxidation without the use of NaNO3 that produces toxic gases. To obtain a porous 3D structure of reduced graphene oxide, we performed the hydrothermal reduction at elevated temperature. We also prepared the rGO aerogel/CNT composite using multiwalled carbon nanotubes as linkers. The rGO...
-
An investigation of microstructural basis for corrosion behavior of Al-CNT composites fabricated by SPS
PublicationIn this research effect of the addition of multi-wall carbon nanotubes (MWCNTs) as additive powder on microstructure and corrosion behavior of fabricated Al-CNT composites was studied. The aluminum powder and CNTs were mixed with high energy planetary ball-mill. It is observed that by increasing milling time, the uniformity of CNTs on aluminum matrix and consequently corrosion resistance of Al-CNT composite is increased. On the...
-
Continuum contact model for friction between graphene sheets that accounts for surface anisotropy and curvature
PublicationUnderstanding the interaction mechanics between graphene layers and co-axial carbon nanotubes (CNTs) is essential for modeling graphene and CNT-based nanoelectromechanical systems. This work proposes a new continuum contact model to study interlayer interactions between curved graphene sheets. The continuum model is calibrated and validated using molecular dynamics (MD) simulations. These are carried out employing the reactive...
-
Comparison of bacterial production in the water column between two Arctic fjords, Hornsund and Kongsfjorden (West Spitsbergen)
PublicationBacterial production and the accompanying environmental factors were measured in the water columns of two Arctic fjords during the cruise in July and August 2013. Water samples were collected at six stations located in the central part of Hornsund and Kongsfjorden. In Hornsund, where average water temperatures were 1.25-fold lower than in Kongsfjorden, the bacterial production was twice as high (0.116 ± 0.102 vs 0.05 ± 0.03 mg...
-
Structural and electrochemical heterogeneities of boron-doped diamond surfaces
PublicationThis brief review is focussed on the recent progress in studies of the heterogeneous electrochemical behaviour of various boron-doped materials extending from zero-dimensional particles through polycrystalline or nanostructured three-dimensional surfaces. A boron-doped diamond reveals large heterogeneities induced by numerous factors, inter alia multi-faceted crystallinity, inhomogeneous boron concentration, sp2/sp3-carbon ratio,...
-
Improving denitrification efficiency at the "Wschod" WWTP in Gdansk (Poland) - effects of different carbon sources
PublicationCelem badań było określenie wpływu dawkowania trzech różnych źródeł węgla (ścieków po oczyszczaniu mechanicznym, metanolu, ścieków gorzelnianych) na szybkość denitryfikacji, mierzoną w warunkach laboratoryjnych z osadem czynnym z oczyszczalni ścieków Gdańsk-Wschód. Największą szybkość procesu (4.8-5.2 mgN/(g*h)) zaobserwowano dla ścieków przemysłowych. Dodatkowo przeprowadzono badanie długości fazy adaptacji osadu do metanolu w...
-
The Ellenbogen's “Matter as Software” Concept for Quantum Computer Implementation. C60 and X@C60 Molecules as Available Molecular Building Blocks (MBBs) for Tip-Based Nanofabrication (TBN) of Quantum Computing Devices
PublicationThe TBN bottom-up strategy of building quantum devices from C60 and X@C60 MBBs is proposed as an extension of the Ellenbogen's “Matter as Software” idea to quantum information processing. The capped SW or DW CNT STM tip is considered as device for manipulating C60 and X@C60 molecules. In this article, the possibility of using easily available on the market C60 Fullerene and endohedral X@C60 molecules together with commercial CNT...
-
Imaging of the effects of pitting corrosion with the use of AFM
Open Research DataPitting corrosion is a local attack on a metal surface, limited to a point or small area, which appears as a hole. Pitting corrosion is one of the most harmful forms of corrosion due to the fact that it is associated with small, difficult to detect damage, that can even lead to perforation of the structure. A single pit may range in size from micrometers...
-
Silicon oxycarbide-tin nanocomposite derived from a UV crosslinked single source preceramic precursor as high-performance anode materials for Li-ion batteries
PublicationIn this work, we report an innovative and facile UV light-assisted synthesis of a nanocomposite based on silicon oxycarbide (SiOC) and tin nanoparticles. SiOC ceramic matrix, containing a conductive free carbon phase, participates in lithium-ion storage, and buffers the volume changes of Li-alloying/de-alloying material. The reported synthesis procedure through a polymer-derived ceramic route involves the preparation of a single-source...
-
Influence of pore formers on electrical properties of CaTi0.9Fe0.1O3-δ perovskite-type ceramics
PublicationPorous CaTi0.9Fe0.1O3-δ (CTF) perovskites were synthesized by the standard solid state method at different sintering temperatures with carbon black (CB), corn starch (CS) and potato starch (PS) as pore-forming agents. The ceramic samples of porosity between 9% and 42% with 5 - 40 μm pore sizes, were obtained by a 6 h sintering at either 1130º C or 1200º C of precursor powder prepared at 1470º C. X-ray diffraction analysis proved...
-
Bone healing under different lay‐up configuration of carbon fiber‐reinforced PEEK composite plates
PublicationSecondary healing of fractured bones requires an application of an appropriate fixa-tor. In general, steel or titanium devices are used mostly. However, in recent years,composite structures arise as an attractive alternative due to high strength to weightratio and other advantages like, for example, radiolucency. According to Food andDrug Administration (FDA), the only unidirectionally reinforced composite allowed tobe implanted...
-
Aluminum-TiO2 NPs Composites as Non-precious Catalysts for Efficient Electrochemical Generation of Hydrogen
PublicationIn this paper, we demonstrated, for the first time, aluminum titania nanoparticle (Al-TiO2 NP) composites with variable amounts of TiO2 NPs as nonprecious active catalysts for the electrochemical generation of H2. These materials were synthesized by mixing desired amounts of hydrogen titanate nanotubes (TNTs), fabricated here by a cost-effective approach at moderate hydrothermal conditions, with aluminum powder (purity 99.7%; size...
-
Tuning of microstructure in engineered poly (trimethylene terephthalate) based blends with nano inclusion as multifunctional additive
PublicationImmiscible blends and their composites are heterogeneous and have variable morphology due to variation in mesophase regions. Tuning, i.e. controlling the phase dimension is important, thereof we report a “super-combo” effect of multiwalled carbon nanotubes (MWCNTs) in poly (trimethylene terephthalate)/polypropylene (PTT/ PP) blend system. MWCNTs act as a good reinforcing agent and compatibilizer in the otherwise immiscible PTT/...
-
Combined partial denitrification/anammox process for nitrogen removal in wastewater treatment
PublicationRecently, the combined partial denitrification and anammox (PD/anammox) has received special attention as a viable alternative for N removal using organic matter present in municipal wastewater. In comparison with conventional nitrification-denitrification, PD/anammox provides enormous opportunities to achieve sustainable wastewater treatment due to the lack of dissolved oxygen (DO) demand, a smaller amount of organic carbon (C)...
-
Studies on Silver Ions Releasing Processes and Mechanical Properties of Surface-Modified Titanium Alloy Implants
PublicationDispersed silver nanoparticles (AgNPs) on the surface of titanium alloy (Ti6Al4V) and titanium alloy modified by titania nanotube layer (Ti6Al4V/TNT) substrates were produced by the chemical vapor deposition method (CVD) using a novel precursor of the formula [Ag5(O2CC2F5)5(H2O)3]. The structure and volatile properties of this compound were determined using single crystal X-ray diffractometry, variable temperature IR spectrophotometry...
-
Degradation of xylose using a microbial fuel cell
PublicationIt is generally known, that many kind of microorganisms are capable of using carbohydrates as a source of carbon and energy in an environment. The biodegradation process of monosaccharides from pentoses (in this case- racemic mixture of D - and L – xylose) is an immense opportunity for an entire reduction of biological contamination to neutral compounds through MFC. The process is occurred in a single-chamber MFC, which is contained...
-
Biophotonic low-coherence sensors with boron-doped diamond thin layer
PublicationLow-coherence sensors using Fabry-Perot interferometers are finding new applications in biophotonic sensing, especially due to the rapid technological advances in the development of new materials. In this paper we discuss the possibility of using boron-doped nanodiamond layers to protect mirror in a Fabry-Perot interferometer. A low-coherence sensor using Fabry-Perot interferometer with a boron-doped nanodiamond (B-NCD) thin protective...
-
An experimental assessment on a diesel engine powered by blends of waste-plastic-derived pyrolysis oil with diesel
PublicationThe utilization of plastic solid wastes for sustainable energy production is a crucial aspect of the circular economy. This study focuses on pyrolysis as an effective method to convert this feedstock into renewable drop-in fuel. To achieve this, it is essential to have a comprehensive understanding of feedstock composition, pyrolysis process parameters, and the physicochemical characteristics of the resulting fuel, all correlated...
-
Stable Field Electron Emission and Plasma Illumination from Boron and Nitrogen Co‐Doped Edge‐Rich Diamond‐Enhanced Carbon Nanowalls
PublicationSuperior field electron emission (FEE) characteristics are achieved in edge-rich diamond-enhanced carbon nanowalls (D-ECNWs) grown in a single-step chemical vapor deposition process co-doped with boron and nitrogen. The structure consists of sharp, highly conductive graphene edges supplied by a solid, diamond-rich bottom. The Raman and transmission electron microscopy studies reveal a hybrid nature of sp3-diamond and sp2-graphene...
-
Diphosphinoboranes as Intramolecular Frustrated Lewis Pairs: P–B–P Bond Systems for the Activation of Dihydrogen, Carbon Dioxide, and Phenyl Isocyanate
PublicationHerein, we present the first example of the activation of small molecules by P-B-P bond systems. The reactivity study involves reactions of two selected diphosphinoboranes, (tBu2P)2BPh (1’) and (Cy2P)2BNiPr2 (2), that differ in terms of their structural and electronic properties for the activation of dihydrogen, carbon dioxide, and phenyl isocyanate. Diphosphinoborane 1’ activates H2 under very mild conditions in the absence of...
-
Electrodes criticality: the impact of CRMs in the leachate electrochemical oxidation
Publication. Landfill leachate possesses high concentrations of ammonia, micropollutants, and heavy metals, and are characterised for low biodegradability. For this reason, conventional treatment technologies may result ineffective for complete pollutant removal. Electrochemical oxidation allows most of the of recalcitrant pollutants to be oxidised effectively within an easy operational and acceptable retention time, without the need to provide...
-
The smartest location for an eco-district– investigation of urban spatial energy efficiency
Publicationncreasing awareness concerning environmental aspects of spatial and architectural planning led to more deliberated projects of eco-districts. Located all over the world and constantly being improved, apart from excellent energetical parameters, most of them have one specific characteristic in common, which is location in the outskirts. The aim of this article was to understand the importance of ecological district location depending...
-
Multi-pathway mechanism of polydopamine film formation at vertically aligned diamondised boron-doped carbon nanowalls
PublicationBoron-doped carbon nanowall (B:CNW) electrodes were used as a platform for studying the electropolymerisation of dopamine. Due to the unique properties of B:CNW, including the fast charge-transfer kinetics and high surface conductivity, a high degree of reversibility of redox reactions was achieved. Three separated redox peaks were observed on voltammograms and attributed to three fundamental reactions in the dopamine polymerisation...
-
Techno-economic analysis of a hybrid energy system for electrification using an off-grid solar/biogas/battery system employing HOMER: A case study in Vietnam
PublicationThe electrification of off-grid /island villages is a critical step towards improving the techno-economic circumstances of rural regions and the overall general growth of the country. However, consistent supply from a single source is not possible in these areas. Thus, a hybrid renewable energy system performs better in these conditions. The research challenge now is to identify the optimal combinations of HRES from the available...
-
The new diphosphanylphosphido complexes of tungsten(VI) and molybdenum(VI). Their synthesis, structures and properties
PublicationWe report on the reactivity of R2P–P(Li)–PR’2 (R = tBu, iPr, R’ = NEt2, iPr) towards diimido complexes [(dippN)2MCl2·dme] (M = Mo, W and dipp = 2,6-iPr2C6H3). A series of new complexes with diphosphanylphosphido ligands R2P–P–PR’2 were isolated. The solid-state structures of [(dippN)2M(Cl)(1,2-η-iPr2P–P– PiPr2)] (2Mo and 2W) and [(dippN)2M(Cl){1,2-η-tBu2P–P–P(NEt2)2}] (3Mo and 3W) were established by single-crystal X-ray diffraction...
-
Comparison of Renewable Energy Sources in ‘New’ EU Member States in the Context of National Energy Transformations
PublicationThe European Union strives to create sustainable, low-carbon economies; therefore, energy policies of all member states should move towards renewable energy sources (RES). That concerns also the so-called new EU member states. These countries, on the one hand, are characterized by significant historical similarities in terms of post-communist legacy and adopted development strategies linked with the EU membership, and on the other...
-
Model-based identification of the dominant N2O emission pathway in a full-scale activated sludge system
PublicationActivated sludge models (ASMs), extended with an N2O emission module, are powerful tools to describe the operation of full-scale wastewater treatment plants (WWTPs). Specifically, such models can investigate the most contributive N2O production pathways and guide towards N2O and carbon footprint (CF) mitigation measures. A common practice is to develop and validate models using data from a single WWTP. In this study, a successfully...
-
Integrating conventional nitrogen removal with anammox in wastewater treatment systems: Microbial metabolism, sustainability and challenges
PublicationThe various forms of nitrogen (N), including ammonium (NH4+), nitrite (NO2−), and nitrate (NO3−), present in wastewaters can create critical biotic stress and can lead to hazardous phenomena that cause imbalances in biological diversity. Thus, biological nitrogen removal (BNR) from wastewaters is considered to be imperatively urgent. Therefore, anammox-based systems, i.e. partial nitrification and anaerobic ammonium oxidation (PN/anammox)...
-
Performance and emission characteristics of diesel engines running on gaseous fuels in dual-fuel mode
PublicationConventional fossil fuels are being substituted with alternative green fuels because of their greenhouse gas emissions and pollution problems, which pose a severe threat to the environment. Several studies have reported the usage of biodiesel and gaseous fuels in both single and dual-fuel modes. Gaseous fuels such as producer gas, biogas, syngas, and hydrogen produced from renewable biomass could potentially be used along with...
-
Understanding the kinetics and atmospheric degradation mechanism of chlorotrifluoroethylene (CF2=CFCl) initiated by OH radicals
PublicationThe atmospheric degradation of chlorotrifluoroethylene (CTFE) by OH˙ was investigated using density functional theory (DFT). The potential energy surfaces were also defined in terms of single-point energies derived from the linked cluster CCSD(T) theory. With an energy barrier of −2.62 to −0.99 kcal mol−1 using the M06-2x method, the negative temperature dependence was determined. The OH˙ attack on Cα and Cβ atoms (labeled pathways...
-
A study of a compact high-efficiency zero-emission power plant with oxy-fuel combustion
PublicationThis paper discusses the application of global trends in gas cycles technology using oxy-fuel combustion. This is followed by a demonstration of a design solution for a new cycle with two enhanced energy-converting devices, namely a wet combustion chamber and a spray-ejector condenser. The proposed gas and steam cycle unit is contained within a single turbine, whose benefits combine those offered by gas turbines (high inlet temperatures)...
-
Heterojunction of (P, S) co-doped g-C3N4 and 2D TiO2 for improved carbamazepine and acetaminophen photocatalytic degradation
PublicationNovel photocatalysts of phosphorus and sulfur co-doped graphitic carbon nitride incorporated in 2D TiO2 structure were successfully fabricated and applied for solar-driven degradation of emerging pollutants from the group of pharmaceuticals not susceptible to biodegradation. The hybrid photocatalysts with different loadings of (P, S)-doped g-C3N4 were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR),...