Search results for: nonlinear simulations
-
Selection and Setting of an Intelligent Fuzzy Regulator based on Nonlinear Model Simulations of a Helicopter in Hover
Publication -
Geometrically nonlinear FEM analysis of 6-parameter resultant shell theory based on 2-D Cosserat constitutive model
PublicationWe develop the elastic constitutive law for the resultant statically and kinematically exact, nonlinear, 6-parameter shell theory. The Cosserat plane stress equations are integrated through-the- thickness under assumption of the Reissner-Mindlin kinematics. The resulting constitutive equations for stress resultant and couple resultants are expressed in terms of two micropolar constants: the micropolar modulus Gc and the micropolar...
-
Nonlinear secondary arc model use for evaluation of single pole auto-reclosing effectiveness
PublicationPurpose – The purpose of this paper is to discuss two evaluation methods of single pole autoreclosing process effectiveness in HV transmission lines. Secondary arc current and recovery voltage results obtained by load flow calculation are compared to the results obtained by the time domain simulations. Moreover, a nonlinear secondary arc implementation is presented. Design/methodology/approach – A computer simulation studies were...
-
Evaluation of overstrength-based interaction checks for columns in steel moment frames
PublicationCurrent design guidelines in the United States require a check for only column axial force under overstrength seismic loads for capacity-designed steel moment frames. A study is presented to examine the implications of this guidance, which disregards the column interaction check (including both axial force and moment) under overstrength seismic loads. A set of thirteen steel moment frames are designed using multiple rules that...
-
Antenna Modeling Using Variable-Fidelity EM Simulations and Constrained Co-Kriging
PublicationUtilization of fast surrogate models has become a viable alternative to direct handling of fullwave electromagnetic (EM) simulations in EM-driven design. Their purpose is to alleviate the difficulties related to high computational cost of multiple simulations required by the common numerical procedures such as parametric optimization or uncertainty quantification. Yet, conventional data-driven (or approximation) modeling techniques...
-
Non-uniqueness of fracture parameter choice in simulations of concrete cracking at mesoscale level
PublicationIn the paper a non-uniqueness of fracture parameter choice in simulations of cracking process in plain concrete specimens at mesoscale level under monotonic static loading is analysed. The Finite Element Method is used, where cracks are defined in a discrete way using interface cohesive elements with nonlinear material law including softening. The concrete mesostructure (such as: cement matrix, air voids, aggregates, and Interfacial...
-
FDTD Simulations on Disjoint Domains with the Use of Discrete Green's Function Diakoptics
PublicationA discrete Green's function (DGF) approach to couple disjoint domains in the finite-difference time-domain (FDTD) grid is developed. In this method, total-field/scattered-field (TFSF) FDTD domains are associated with simulated objects whereas the interaction between them is modeled with the use of the DGF propagator. Hence, source and scatterer are simulated in separate domains and updating of vacuum cells, being of little interest,...
-
Nonlinear Control of a Doubly Fed Generator Supplied by a Current Source Inverter
PublicationNowadays, wind turbines based on a doubly fed induction generator (DFIG) are a commonly used solution in the wind industry. The standard converter topology used in these systems is the voltage source inverter (VSI). The use of reverse-blocking insulated gate bipolar transistor (RB-IGBT) in the current source inverter topology (CSI), which is an alternative topology, opens new possibilities of control methods. This paper presents...
-
Measurements and Simulations of Engineered Ultrasound Loudspeakers
PublicationSimulation and measurement results of the sound emitted from an ultrasound custom-made system with high spatial directivity are presented. The proposed system is using modulated ultrasound waves which demodulate in nonlinear medium resulting in audible sound. The system is aimed at enhancing the users’ personal audio space, therefore the measurements are performed using the Head and Torso Simulator which provides realistic reproduction...
-
Nonlinear material identification of heterogeneous isogeometric Kirchhoff–Love shells
PublicationThis work presents a Finite Element Model Updating inverse methodology for reconstructing heterogeneous materialdistributions based on an efficient isogeometric shell formulation. It uses nonlinear hyperelastic material models suitable fordescribing incompressible material behavior as well as initially curved shells. The material distribution is discretized by bilinearelements such that the nodal values...
-
Surrogate modeling of impedance matching transformers by means of variable‐fidelity electromagnetic simulations and nested cokriging
PublicationAccurate performance evaluation of microwave components can be carried out using full‐wave electromagnetic (EM) simulation tools, routinely employed for circuit verification but also in the design process itself. Unfortunately, the computational cost of EM‐driven design may be high. This is especially pertinent to tasks entailing considerable number of simulations (eg, parametric optimization, statistical analysis). A possible...
-
Determination of time delay between ventricles contraction using impedance measurements
PublicationThe paper presents a novel approach to assessment of ventricular dyssynchrony basing on multichannel electrical impedance measurements. Using a proper placement of electrodes, the sensitivity approach allows estimating time difference between chambers contraction from over determined nonlinear system of equations. The theoretical considerations which include Finite Element Method simulations were verified using measurements on...
-
Database of the illustrative simulations of the nonstandard approximation of the generalized Burgers–Huxley equation
Open Research DataThe presented dataset is a result of numerical analysis of a generalized Burgers–Huxley partial differential equation. An analyzed diffusive partial differential equation consist with nonlinear advection and reaction. The reaction term is a generalized form of the reaction law of the Hodgkin–Huxley model, while the advection is a generalized form of...
-
Data on solutions of Hes1 system
Open Research DataHes1 protein (hairy and enhancer of split 1) belongs to the helix-loop-helix (bHLH) family of transcription proteins, i.e. DNA-binding proteins in the promoter region or in another region where regulation of transcription processes occurs. The database collects data on solutions of the Hes1 systems with multiple binding sites and the dimer formation...
-
A Novel Speed Observer for Doubly-Fed Induction Generator
PublicationThe purpose of this paper is to show a new state observer for doubly-fed generator. A proposed z-type observer algorithm based on mathematical model of doubly fed generator with additional variables treated as a disturbances has been used. A nonlinear multiscalar control method has been used to control active and reactive power of the generator. All analyses were verified by simulations and experiments tests.
-
Representation of magnetic hysteresis in single-phase transformer for circuit simulations
PublicationThe paper presents a mathematical model for the hysteresis phenomenon in a multi-winding single-phase core type transformer. In the circuit transformer model, it is assumed that there is a flux common Φ to all windings as nonlinear and hysteretic function of the total currents Θ (Ampere turns) of all windings. To simulate magnetic behaviour of the iron core the feedback scalar Preisach model of hysteresis is developed. The Preisach...
-
Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit
PublicationConsidering the interplay between orbital bones and intraorbital soft tissues, commonly accepted patterns of the blow-out type of trauma within the human orbit require more thorough investigation to assess the minimal health-threatening impact value. Two different three-dimensional finite element method (FEM) models of the human orbital region were developed to simulate the pure “buckling” mechanism of orbital wall fracture in...
-
Accurate Computation of IGBT Junction Temperature in PLECS
PublicationIn the article, a new method to improve the accuracy of the insulated-gate bipolar transistor (IGBT) junction temperature computations in the piecewise linear electrical circuit simulation (PLECS) software is proposed and described in detail. This method allows computing the IGBT junction temperature using a nonlinear compact thermal model of this device in PLECS. In the method, a nonlinear compact thermal model of the IGBT is...
-
Resistant to correlated noise and outliers discrete identification of continuous non-linear non-stationary dynamic objects
PublicationIn this article, specific methods of parameter estimation were used to identify the coefficients of continuous models represented by linear and nonlinear differential equations. The necessary discrete-time approximation of the base model is achieved by appropriately tuned FIR linear integral filters. The resulting discrete descriptions, which retain the original continuous parameterization, can then be identified using the classical...
-
Rapid Design Tuning of Miniaturized Rat-Race Couplers Using Regression-Based Equivalent Network Surrogates
PublicationA simple technique for fast design tuning of compact rat-race couplers is presented. Our approach involves equivalent circuit representation, corrected by nonlinear functions of frequency with coefficients extracted through nonlinear regression. At the same time, the tuning process connects two levels of coupler representation: EM simulation of the entire circuit and re-optimization of the coupler building blocks (slow-wave cells...
-
Lagrangian model of an isolated dc-dc converter with a 3-phase medium frequency transformer accounting magnetic cross saturation
PublicationThis article presents a nonlinear equivalent circuit model of an isolated dc-dc converter with a 3-phase medium frequency transformer. The model takes into account the magnetic cross saturation of the 3-phase core-type magnetic circuit. The model is suitable in detailed electromagnetic transient simulations of power systems involving isolated dc-dc converters. The model is developed using the Lagrange energy method. It involves...
-
Compact Quasi-Elliptic-Type Inline Waveguide Bandpass Filters With Nonlinear Frequency-Variant Couplings
PublicationThis work presents the design techniques to synthesize a class of compact inline quasi-elliptic-type waveguide cavity bandpass filters based on novel nonlinear frequency-variant couplings (NFVCs). These highly dispersive frequency-variant couplings (FVCs) are realized by means of a pair of partial-height posts that are placed at the junctions between every two cavity resonators. Each NFVC produces a transmission pole in between...
-
Flexural behavior of composite structural insulated panels with magnesium oxide board facings
PublicationThe current report is devoted to the flexural analysis of a composite structural insulated panel (CSIP) with magnesium oxide board facings and expanded polystyrene (EPS) core, that was recently introduced to the building industry. An advanced nonlinear FE model was created in the ABAQUS environment, able to simulate the CSIP’s flexural behavior in great detail. An original custom code procedure was developed, which allowed to include...
-
Adaptive dynamic control allocation for over-actuated dynamic positioning system based on backstepping method in case of thruster faults
PublicationThe objective of the research considered in this paper is dynamic positioning of a nonlinear over-actuated marine vessel in the presence of limited information about thruster forces. First, the adaptive backstepping method is used to estimate the input matrix which will compensate partial loss of actuator effectiveness in the presence of actuator dynamics. Then, the adaptive commanded virtual forces and moment are allocated into...
-
Constitutive Modelling of Knitted Abdominal Implants in Numerical Simulations of Repaired Hernia Mechanics
PublicationThe paper presents a numerical approach to describe mechanical behavior of anisotropic textile material, which is a selected abdominal prosthesis. Two constitutive nonlinear concepts are compared. In the first one the material is considered composed from two families of threads (dense net model) and in the second one the material is homogeneous but anisotropic (as proposed by Gassel, Ogden, Holzapfel). Parameters of both models...
-
Determination of the Bending Properties of Wire Rope Used in Cable Barrier Systems
PublicationThis paper presents research on the bending properties of 3 × 7 19-mm wire rope commonly used in road cable barriers. A total of 19 experimental tests were conducted. In addition, two nonlinear 3D numerical models of the wire rope using beam and solid finite elements were developed. Based on these models, four numerical simulations were carried out. The numerical results were validated against the experimental ones and a very good...
-
Topological Behaviour of Solutions of Vibro-Impact Systems in the Neighborhood of Grazing
PublicationThe grazing bifurcation is considered for the Newtonian model of vibro-impact systems. A brief review on the conditions, sufficient for the existence of a grazing family of periodic solutions, is given. The properties of these periodic solutions are discussed. A plenty of results on the topological structure of attractors of vibro-impact systems is known. However, since the considered system is strongly nonlinear, these attractors...
-
Decentralized control of a different rated parallel UPS systems
PublicationThe paper presents the single phase uninterruptible power supply (UPS) system with galvanic separated DC-AC-DC-AC converters operating in parallel. The CAN physical layer based system of communication between converters has been developed and applied, which allow to utilize a decentralized master-slave control providing high availability factor of the whole UPS system. The control system of particular converters has been developed...
-
Frequency-Variant Double-Zero Single-Pole Reactive Coupling Networks for Coupled-Resonator Microwave Bandpass Filters
PublicationIn this work, a family of frequency-variant reactive coupling (FVRC) networks is introduced and discussed as new building blocks for the synthesis of coupled-resonator bandpass filters with real or complex transmission zeros (TZs). The FVRC is a type of nonideal frequency-dependent inverter that has nonzero elements on the diagonal of the impedance matrix, along with a nonlinear frequency-variation profile of its transimpedance...
-
Four Degree-of-Freedom Hydrodynamic Maneuvering Model of a Small Azipod-Actuated Ship With Application to Onboard Decision Support Systems
PublicationThe main contribution of this paper is a numerical ship motion model of NTNU’s research vessel Gunnerus, capturing the surge, sway, roll, and yaw dynamics when sailing in uniform and steady currents. The model utilizes a crossflow drag formulation for the transverse viscous loads, and it includes a nonlinear formulation for the propulsion and steering loads provided by two azipod thrusters. A wide range of experimental data obtained...
-
Secondary arc modelling for single pole reclosing analyses
PublicationThe paper discusses two evaluation methods of single pole auto-reclosing process effectiveness in HV transmission lines. Secondary arc current and recovery voltage calculation results obtained by load flow calculation are compared to the results obtained by the time domain simulations. Moreover, a nonlinear secondary arc model implementation is presented. The paper presents the study results for the three types of EHV transmission...
-
BADANIE EFEKTYWNOŚCI WYKRYWANIA ANOMALII PROCESOWYCH W DZIAŁANIU TURBINY PAROWEJ ELEKTROWNI JĄDROWEJ PRZY POMOCY METOD WIELOWYMIAROWEJ ANALIZY STATYSTYCZNEJ
PublicationW artykule przedstawiono analizę możliwości wykrywania anomalii procesowych w działaniu turbiny parowej elektrowni jądrowej przy pomocy metod wielowymiarowej analizy statystycznej. Zasymulowano symptomy dwóch rodzajów uszkodzeń turbiny parowej tj. uderzenie wodne oraz, wyciek pary z zaworu części niskoprężnej. Jako narzędzie diagnostyczne wykorzystano Metodę Składników Podstawowych PCA (z ang. Principal Component Analysis). Jako...
-
Expedited Variable-Resolution Surrogate Modeling of Miniaturized Microwave Passives in Confined Domains
PublicationDesign of miniaturized microwave components is largely based on computational models, primarily, full-wave electromagnetic (EM) simulations. EM analysis is capable of giving an accurate account for cross-coupling effects, substrate and radiation losses, or interactions with environmental components (e.g., connectors). Unfortunately, direct execution of EM-based design tasks such as parametric optimization or uncertainty quantification,...
-
Accurate simulation-driven modeling and design optimization of compact microwave structures
PublicationCost efficient design optimization of microwave structures requires availability of fast yet reliable replacement models so that multiple evaluations of the structure at hand can be executed in reasonable timeframe. Direct utilization of full-wave electromagnetic (EM) simulations is often prohibitive. On the other hand, accurate data-driven modeling normally requires a very large number of training points and it is virtually infeasible...
-
Representation of magnetic hysteresis in a circuit model of a single-phase transformer
PublicationThe paper presents a mathematical model for the hysteresis phenomenon in a multi-winding single-phase core type transformer. The set of loop differential equations was developed for K-th winding transformer model where the flux linkages of each winding includes a flux common Φ to all windings as function of magneto motive force Θ of all windings. The first purpose of this paper is to determine a hysteresis nonlinearity involved...
-
Two-Stage Variable-Fidelity Modeling of Antennas with Domain Confinement
PublicationSurrogate modeling has become the method of choice in solving an increasing number of antenna design tasks, especially those involving expensive full-wave electromagnetic (EM) simulations. Notwithstanding, the curse of dimensionality considerably affects conventional metamodeling methods, and their capability to efficiently handle nonlinear antenna characteristics over broad ranges of the system parameters is limited. Performance-driven...
-
Kernel PCA in Application to Leakage Detection in Drinking Water Distribution System
PublicationMonitoring plays an important role in advanced control of complex dynamic systems. Precise information about system's behaviour, including faults detection, enables efficient control. Proposed method- Kernel Principal Component Analysis (KPCA), a representative of machine learning, skilfully takes full advantage of the well known PCA method and extends its application to nonlinear case. The paper explains the general idea of KPCA...
-
Effect of Base-Connection Strength and Ductility on the Seismic Performance of Steel Moment-Resisting Frames
PublicationColumn-base connections in steel moment-resisting frames (SMFs) in seismic regions are commonly designed to develop the capacity of adjoining column with an intent to develop a plastic hinge in the column member, rather than in the connection (i.e., a strong-base design). Recent research has shown base connections to possess high ductility, indicating that this practice may be not only expensive but also unnecessary. This suggests...
-
Examples of numerical simulations of two-dimensional unsaturated flow with VS2DI code using different interblock conductivity averaging schemes
PublicationFlow in unsaturated porous media is commonly described by the Richards equation. This equation is strongly nonlinear due to interrelationships between water pressure head (negative in unsaturated conditions), water content and hydraulic conductivity. The accuracy of numerical solution of the Richards equation often depends on the method used to estimate average hydraulic conductivity between neighboring nodes or cells of the numerical...
-
Very accurate time propagation of coupled Schrödinger equations for femto- and attosecond physics and chemistry, with C++ source code
PublicationIn this article, I present a very fast and high-precision (up to 33 decimal places) C++ implementation of the semi-global time propagation algorithm for a system of coupled Schrödinger equations with a time-dependent Hamiltonian. It can be used to describe time-dependent processes in molecular systems after excitation by femto- and attosecond laser pulses. It also works with an arbitrary user supplied Hamiltonian and can be used...
-
The α-µ model of the multipath fading channel
Open Research DataThe dataset contains the results of simulations that are part of the research on modelling the multipath fading in the communication channel. The envelope of the α-µ fading process is generated using the Monte-Carlo simulation (MCS) in the LabVIEW programming environment.
-
Genetic Algorithm Approach for Gains Selection of Induction Machine Extended Speed Observer
PublicationThe subject of this paper is gains selection of an extended induction machine speed observer. A high number of gains makes manual gains selection difficult and due to nonlinear equations of the observer, well-known methods of gains selection for linear systems cannot be applied. A method based on genetic algorithms has been proposed instead. Such an approach requires multiple fitness function calls; therefore, using a quality index...
-
Fast bubble dynamics and sizing
PublicationSingle bubble sizing is usually performed by measuring the resonant bubble response using the Dual Frequency Ultrasound Method. However, in practice, the use of millisecond-duration chirp-like waves yields nonlinear distortions of the bubble oscillations. In comparison with the resonant curve obtained under harmonic excitation, it was observed that the bubble dynamic response shifted by up to 20 percent of the resonant frequency...
-
The lognormal model of the multipath fading channel
Open Research DataThe dataset contains the results of simulations that are part of the research on modelling the multipath fading in the communication channel. The lognormal fading envelope is generated using the Monte-Carlo simulation (MCS) in the LabVIEW programming environment.
-
Validation of lumbar spine finite element model
Open Research DataThe functional biomechanics of the lumbar spine have been better understood by finite element method (FEM) simulations. However, there are still areas where the behavior of soft tissues can be better modeled or described in a different way. The purpose of this research is to develop and validate a lumbar spine section intended for biomechanical research....
-
Testing of the longest span soil-steel bridge in Europe – new quality in measurements
PublicationThe article describes interdisciplinary and comprehensive diagnostic tests of final bridge inspection and acceptance proposed for a soil – steel bridge made of corrugated sheets, being the European span length record holder (25.74 m). As an effect of an original concept a detailed and precise information about the structure response was collected. The load test design was based on the nonlinear numerical simulations performed by...
-
Sensorless control of five-phase induction machine supplied by the VSI with output filter
PublicationIn this paper, a novel sensorless control structure based on multi-scalar variables is proposed. The tatic feedback control law is obtained by using the multi-scalar variables transformation, where the multi-scalar variables approach allows a full linearization of the nonlinear system. The control system could be described as “optimized” because of the minimized number of controllers. Furthermore, control system is divided into...
-
Fractional Spectral and Fractional Finite Element Methods: A Comprehensive Review and Future Prospects
PublicationIn this article, we will discuss the applications of the Spectral element method (SEM) and Finite element Method (FEM) for fractional calculusThe so-called fractional Spectral element method (f-SEM) and fractional Finite element method (f-FEM) are crucial in various branches of science and play a significant role. In this review, we discuss the advantages and adaptability of FEM and SEM, which provide the simulations of fractional...
-
Evaluation Of Single Pole Auto-Reclosing Effectiveness With Nonlinear Secondary Arc Model
PublicationThe paper discusses two evaluation methods of single pole auto-reclosing process effectiveness in HV transmission lines. Secondary arc current and recovery voltage results obtained by load flow calculation are compared to the results obtained by the time domain simulations. Moreover, a non-linear secondary arc implementation is presented. The authors indicate, that precise representation of secondary electric arc leads to more...
-
Proportional-Derivative and Model-Based Controllers for Control of a Variable Mass Manipulator
PublicationIn the paper, numerical analysis of dynamics of a variable mass manipulator is presented. A revolute joints composed manipulator is considered. Payload of the gripper is considered as the only element characterized by unknown value of its mass (variable between subsequent operations). As in other cases of the revolute joints composed manipulators, its behaviour dependents significantly on the pose of the manipulator. When the manipulator...