Filtry
wszystkich: 1529
wybranych: 1241
-
Katalog
- Publikacje 1241 wyników po odfiltrowaniu
- Czasopisma 48 wyników po odfiltrowaniu
- Konferencje 69 wyników po odfiltrowaniu
- Osoby 63 wyników po odfiltrowaniu
- Projekty 2 wyników po odfiltrowaniu
- Kursy Online 34 wyników po odfiltrowaniu
- Wydarzenia 5 wyników po odfiltrowaniu
- Dane Badawcze 67 wyników po odfiltrowaniu
Filtry wybranego katalogu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: artificial intelligence, machine learning, cnn, neural networks, optimization algorithms
-
Acquisition and indexing of RGB-D recordings for facial expressions and emotion recognition
PublikacjaIn this paper KinectRecorder comprehensive tool is described which provides for convenient and fast acquisition, indexing and storing of RGB-D video streams from Microsoft Kinect sensor. The application is especially useful as a supporting tool for creation of fully indexed databases of facial expressions and emotions that can be further used for learning and testing of emotion recognition algorithms for affect-aware applications....
-
Book Review
PublikacjaActing over the last three decades as an Editor and Associate Editor for a number of international journals in the general area of cybernetics and AI, as well as a Chair and Co-Chair of numerous conferences in this field, I have had the exciting opportunity to closely witness and to be actively engaged in the stimulating research area of machine learning and its important augmentation with deep learning techniques and technologies. From...
-
Category-Based Workload Modeling for Hardware Load Prediction in Heterogeneous IaaS Cloud
PublikacjaThe paper presents a method of hardware load prediction using workload models based on application categories and high-level characteristics. Application of the method to the problem of optimization of virtual machine scheduling in a heterogeneous Infrastructure as a Service (IaaS) computing cloud is described.
-
Toward Intelligent Recommendations Using the Neural Knowledge DNA
PublikacjaIn this paper we propose a novel recommendation approach using past news click data and the Neural Knowledge DNA (NK-DNA). The Neural Knowledge DNA is a novel knowledge representation method designed to support discovering, storing, reusing, improving, and sharing knowledge among machines and computing systems. We examine our approach for news recommendation tasks on the MIND benchmark dataset. By taking advantages of NK-DNA, deep...
-
Quantifying inconsistencies in the Hamburg Sign Language Notation System
PublikacjaThe advent of machine learning (ML) has significantly advanced the recognition and translation of sign languages, bridging communication gaps for hearing-impaired communities. At the heart of these technologies is data labeling, crucial for training ML algorithms on a huge amount of consistently labeled data to achieve models that generalize well. The adoption of language-agnostic annotations is essential to connect different sign...
-
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
PublikacjaAccurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning...
-
Future research directions in design of reliable communication systems
PublikacjaIn this position paper on reliable networks, we discuss new trends in the design of reliable communication systems. We focus on a wide range of research directions including protection against software failures as well as failures of communication systems equipment. In particular, we outline future research trends in software failure mitigation, reliability of wireless communications, robust optimization and network design, multilevel...
-
Dynamic GPU power capping with online performance tracing for energy efficient GPU computing using DEPO tool
PublikacjaGPU accelerators have become essential to the recent advance in computational power of high- performance computing (HPC) systems. Current HPC systems’ reaching an approximately 20–30 mega-watt power demand has resulted in increasing CO2 emissions, energy costs and necessitate increasingly complex cooling systems. This is a very real challenge. To address this, new mechanisms of software power control could be employed. In this...
-
Gender as a Moderator of the Double Bias of Mistakes – Knowledge Culture and Knowledge Sharing Effects
PublikacjaThere is no learning without mistakes. The essence of the double bias of mistakes is the contradiction between an often-declared positive attitude towards learning from mistakes, and negative experiences when mistakes occur. Financial and personal consequences, shame, and blame force desperate employees to hide their mistakes. These adverse outcomes are doubled in organizations by the common belief that managers never make mistakes,...
-
Video of LEGO Bricks on Conveyor Belt Dataset Series
PublikacjaThe dataset series titled Video of LEGO bricks on conveyor belt is composed of 14 datasets containing video recordings of a moving white conveyor belt. The recordings were created using a smartphone camera in Full HD resolution. The dataset allows for the preparation of data for neural network training, and building of a LEGO sorting machine that can help builders to organise their collections.
-
Model neuronowy jako alternatywa dla numerycznego modelu okołodźwiękowego przepływu pary przez palisadę turbinową.
PublikacjaWystępowanie skośnej fali uderzeniowej w przepływie pary przez palisadę turbinową stanowi zagrożenie dla bezpiecznej pracy turbiny oraz dla jej elementów konstrukcyjnych. Detekcja oraz lokalizacja fali uderzeniowej, a także rozpoznanie przyczyny jej powstawania, nie są możliwe do osiągnięcia na drodze pomiarowej. Analizę zjawisk zachodzących wewnątrz kanału przepływowego umożliwiają natomiast modele numeryczne oraz neuronowe. Zaletą...
-
Investigation of educational processes with affective computing methods
PublikacjaThis paper concerns the monitoring of educational processes with the use of new technologies for the recognition of human emotions. This paper summarizes results from three experiments, aimed at the validation of applying emotion recognition to e-learning. An analysis of the experiments’ executions provides an evaluation of the emotion elicitation methods used to monitor learners. The comparison of affect recognition algorithms...
-
Detection of Alzheimer's disease using Otsu thresholding with tunicate swarm algorithm and deep belief network
PublikacjaIntroduction: Alzheimer’s Disease (AD) is a degenerative brain disorder characterized by cognitive and memory dysfunctions. The early detection of AD is necessary to reduce the mortality rate through slowing down its progression. The prevention and detection of AD is the emerging research topic for many researchers. The structural Magnetic Resonance Imaging (sMRI) is an extensively used imaging technique in detection of AD, because...
-
Big Data from Sensor Network via Internet of Things to Edge Deep Learning for Smart City
PublikacjaData from a physical world is sampled by sensor networks, and then streams of Big Data are sent to cloud hosts to support decision making by deep learning software. In a smart city, some tasks may be assigned to smart devices of the Internet of Things for performing edge computing. Besides, a part of workload of calculations can be transferred to the cloud hosts. This paper proposes benchmarks for division tasks between an edge...
-
Evolution of Animats Following a Moving Target in an Artificial Ecosystem
PublikacjaMany biological animals, even microscopically small, are able to track moving sources of food. In this paper, we investigate the emergence of such behavior in artificial animals (animats) in a 2-dimensional simulated liquid environment. These "predators" are controlled by evolving artificial gene regulatory networks encoded in linear genomes. The fate of the predators is determined only by their ability to gather food and reproduce—no...
-
Anomaly Detection in Railway Sensor Data Environments: State-of-the-Art Methods and Empirical Performance Evaluation
PublikacjaTo date, significant progress has been made in the field of railway anomaly detection using technologies such as real-time data analytics, the Internet of Things, and machine learning. As technology continues to evolve, the ability to detect and respond to anomalies in railway systems is once again in the spotlight. However, railway anomaly detection faces challenges related to the vast infrastructure, dynamic conditions, aging...
-
Trawl-Door Shape Optimization with 3D CFD Models and Local Surrogates
PublikacjaDesign and optimization of trawl-doors are key factors in minimizing the fuel consumption of fishing vessels. This paper discusses optimization of the trawl-door shapes using high-fidelity 3D computational fluid dynamic (CFD) models. The accurate 3D CFD models are computationally expensive and, therefore, the direct use of traditional optimization algorithms, which often require a large number of evaluations, may be prohibitive....
-
Dot-com and AI bubbles: Can data from the past be helpful to match the price bubble euphoria phase using dynamic time warping?
PublikacjaThe article investigates the existence of a price bubble in the artificial intelligence market, employing the Generalised Supremum Augmented Dickey-Fuller test and dynamic time warping methodology. It proposes a method to detect the end of the price bubble euphoria phase, generating an average profit of close to 7% over 5 days and over 10.5% over 20 days, with almost 90% effectiveness. The study found that the AI market experienced...
-
AI in the creation of the satellite maps
PublikacjaSatellite and aerial imagery acquisition is a very useful source of information for remote monitoring of the Earth’s surface. Modern satellite and aerial systems provide data about the details of the site topography, its characteristics due to different criteria (type of terrain, vegetation cover, soil type and moisture content), or even information about emergency situations or disasters. The paper proposes and discusses the process...
-
Widespread theta synchrony and high-frequency desynchronization underlies enhanced cognition
PublikacjaThe idea that synchronous neural activity underlies cognition has driven an extensive body of research in human and animal neuroscience. Yet, insufficient data on intracranial electrical connectivity has precluded a direct test of this hypothesis in a whole-brain setting. Through the lens of memory encoding and retrieval processes, we construct whole-brain connectivity maps of fast gamma (30-100 Hz) and slow theta (3-8 Hz) spectral...
-
Driver fatigue detection method based on facial image analysis
PublikacjaNowadays, ensuring road safety is a crucial issue that demands continuous development and measures to minimize the risk of accidents. This paper presents the development of a driver fatigue detection method based on the analysis of facial images. To monitor the driver's condition in real-time, a video camera was used. The method of detection is based on analyzing facial features related to the mouth area and eyes, such as...
-
Towards Cancer Patients Classification Using Liquid Biopsy
PublikacjaLiquid biopsy is a useful, minimally invasive diagnostic and monitoring tool for cancer disease. Yet, developing accurate methods, given the potentially large number of input features, and usually small datasets size remains very challenging. Recently, a novel feature parameterization based on the RNA-sequenced platelet data which uses the biological knowledge from the Kyoto Encyclopedia of Genes and Genomes, combined with a classifier...
-
Novel Adaptive Method for Data Streams Allocation Based on the Estimate of Radio Channel Parameters in Heterogeneous WBAN Network
PublikacjaThe new adaptive method for data streams allocation in heterogeneous Wireless Body Area Networks and meas-urement equipment is presented. The results obtained using the developed method compared with the selected algorithms likely to be used in those networks. The pro-posed adaptive data streams allocation method based on radio channel parameters makes it even twice as efficient to use in terms of resources usage in a WBAN heterogeneous...
-
Intracranial hemorrhage detection in 3D computed tomography images using a bi-directional long short-term memory network-based modified genetic algorithm
PublikacjaIntroduction: Intracranial hemorrhage detection in 3D Computed Tomography (CT) brain images has gained more attention in the research community. The major issue to deal with the 3D CT brain images is scarce and hard to obtain the labelled data with better recognition results. Methods: To overcome the aforementioned problem, a new model has been implemented in this research manuscript. After acquiring the images from the Radiological...
-
Resource constrained neural network training
PublikacjaModern applications of neural-network-based AI solutions tend to move from datacenter backends to low-power edge devices. Environmental, computational, and power constraints are inevitable consequences of such a shift. Limiting the bit count of neural network parameters proved to be a valid technique for speeding up and increasing efficiency of the inference process. Hence, it is understandable that a similar approach is gaining...
-
A Robust Random Forest Model for Classifying the Severity of Partial Discharges in Dielectrics
PublikacjaPartial Discharges (PDs) are a common source of degradation in electrical assets. It is essential that the extent of the deterioration level of insulating medium is correctly identified, to optimize maintenance schedules and prevent abrupt power outages. Temporal PD signals received from damaged insulation, collected through the IEC-60270 method is the gold standard for PD detection. Temporal signals may be transformed to the frequency...
-
New Two-center Ellipsoidal Basis Function Neural Network for Fault Diagnosis of Analog Electronic Circuits
PublikacjaIn the paper a new fault diagnosis-oriented neural network and a diagnostic method for localization of parametric faults in Analog Electronic Circuits (AECs) with tolerances is presented. The method belongs to the class of dictionary Simulation Before Test (SBT) methods. It utilizes dictionary fault signatures as a family of identification curves dispersed around nominal positions by component tolerances of the Circuit Under Test...
-
Generating optimal paths in dynamic environments using RiverFormation Dynamics algorithm
PublikacjaThe paper presents a comparison of four optimisation algorithms implemented for the purpose of finding the shortest path in static and dynamic environments with obstacles. Two classical graph algorithms –the Dijkstra complete algorithm and A* heuristic algorithm – were compared with metaheuristic River Formation Dynamics swarm algorithm and its newly introduced modified version. Moreover, another swarm algorithm has been compared...
-
Balanced Spider Monkey Optimization with Bi-LSTM for Sustainable Air Quality Prediction
PublikacjaA reliable air quality prediction model is required for pollution control, human health monitoring, and sustainability. The existing air quality prediction models lack efficiency due to overfitting in prediction model and local optima trap in feature selection. This study proposes the Balanced Spider Monkey Optimization (BSMO) technique for effective feature selection to overcome the local optima trap and overfitting problems....
-
Damage Detection Strategies in Structural Health Monitoring of Overhead Power Transmission System
PublikacjaOverhead power transmission lines, their supporting towers, insulators and other elements create a highly distributed system that is vulnerable to damage. Typical damage scenarios cover cracking of foundation, breakage of insulators, loosening of rivets, as well as cracking and breakage of lines. Such scenarios may result from various factors: groundings, lightning strikes, floods, earthquakes, aeolian vibrations, conductors galloping,...
-
Algorytmy wyodrębniania składowych symetrycznych sygnału pomiarowego napięcia w przypadku asymetrii sieci trójfazowej
PublikacjaW artykule zaprezentowano działanie wybranych algorytmów wykorzystywanych do wyodrębniania składowych symetrycznych z sygnałów pomiarowych napięcia lub prądu w przypadku wystąpienia asymetrii trójfazowej sieci elektroenergetycznej. Weryfikacji działania algorytmów dokonano na podstawie badań symulacyjnych i laboratoryjnych w układzie w którym jako odbiornik zastosowano stojan maszyny asynchronicznej pierścieniowej. Określono wpływ...
-
Swarm-Assisted Investment Planning of a Bioethanol Plant
PublikacjaBioethanol is a liquid fuel for which a significant increase in the share of energy sources has been observed in the economies of many countries. The most significant factor in popularizing bioethanol is the profitability of investments in construction of facilities producing this energy source, as well as the profitability of its supply chain. With the market filled with a large amount of equipment used in the bioethanol production...
-
Optimal Placement of Phasor Measurement Unit in Power System using Meta-Heuristic Algorithms
PublikacjaThe phasor measurement units (PMUs) play an important and vital role in power system monitoring and controlling, since they provide the power system phasors stamped with a common real time reference through a global positioning system (GPS). Indeed, from economical point of view it is not possible to set PMUs in all system buses due to the high cost and the requirement of more complex communication...
-
Expedited Feature-Based Quasi-Global Optimization of Multi-Band Antenna Input Characteristics with Jacobian Variability Tracking
PublikacjaDesign of modern antennas relies—for reliability reasons—on full-wave electromagnetic simulation tools. In addition, increasingly stringent specifications pertaining to electrical and field performance, growing complexity of antenna topologies, along with the necessity for handling multiple objectives, make numerical optimization of antenna geometry parameters a highly recommended design procedure. Conventional algorithms, particularly...
-
Determination of chlorine concentration using single temperature modulated semiconductor gas sensor
PublikacjaA periodic temperature modulation using sinusoidal heater voltage was applied to a commercial SnO2 semiconductor gas sensor. Resulting resistance response of the sensor was analyzed using a feature extraction method based on Fast Fourier Transformation (FFT). The amplitudes of the higher harmonics of the FFT from the dynamic nonlinear responses of measured gas were further utilized as an input for Artificial Neural...
-
Expedited Optimization of Passive Microwave Devices Using Gradient Search and Principal Directions
PublikacjaOver the recent years, utilization of numerical optimization techniques has become ubiquitous in the design of high-frequency systems, including microwave passive components. The primary reason is that the circuits become increasingly complex to meet ever growing performance demands concerning their electrical performance, additional functionalities, as well as miniaturization. Nonetheless, as reliable evaluation of microwave device...
-
Application possibilities of LBN for civil engineering issues
PublikacjaBayesian Networks (BN) are efficient to represent knowledge and for the reasoning in uncertainty. However the classic BN requires manual definition of the network structure by an expert, who also defines the values entered into the conditional probability tables. In practice, it can be time-consuming, hence the article proposes the use of Learning Bayesian Networks (LBN). The aim of the study is not only to present LBN, which can...
-
A Review of Emotion Recognition Methods Based on Data Acquired via Smartphone Sensors
PublikacjaIn recent years, emotion recognition algorithms have achieved high efficiency, allowing the development of various affective and affect-aware applications. This advancement has taken place mainly in the environment of personal computers offering the appropriate hardware and sufficient power to process complex data from video, audio, and other channels. However, the increase in computing and communication capabilities of smartphones,...
-
Will NILM Technology Replace Multi-Meter Telemetry Systems for Monitoring Electricity Consumption?
PublikacjaThe estimation of electric power utilization, its baseload, and its heating, light, ventilation, and air-conditioning (HVAC) power component, which represents a very large portion of electricity usage in commercial facilities, are important for energy consumption controls and planning. Non-intrusive load monitoring (NILM) is the analytical method used to monitor the energy and disaggregate total electrical usage into appliance-related...
-
Survey on fuzzy logic methods in control systems of electromechanical plants
PublikacjaРассмотрены алгоритмы управления электромеханическими системами с использованием теории нечеткой логики, приводятся основные положения их синтеза, рассматриваются методы анализа их устойчивости на основе нечетких функций Ляпунова. Эти алгоритмы чаще всего реализуются в виде различных регуляторов, применение которых целесообразно в системах, математическая модель которых не известна, не детерминирована или является строго нелинейной,...
-
Underground Water Level Prediction in Remote Sensing Images Using Improved Hydro Index Value with Ensemble Classifier
PublikacjaThe economic sustainability of aquifers across the world relies on accurate and rapid estimates of groundwater storage changes, but this becomes difficult due to the absence of insitu groundwater surveys in most areas. By closing the water balance, hydrologic remote sensing measures offer a possible method for quantifying changes in groundwater storage. However, it is uncertain to what extent remote sensing data can provide an...
-
Recurrent Neural Network Based Adaptive Variable-Order Fractional PID Controller for Small Modular Reactor Thermal Power Control
PublikacjaThis paper presents the synthesis of an adaptive PID type controller in which the variable-order fractional operators are used. Due to the implementation difficulties of fractional order operators, both with a fixed and variable order, on digital control platforms caused by the requirement of infinite memory resources, the fractional operators that are part of the discussed controller were approximated by recurrent neural networks...
-
Computationally Efficient Surrogate-Assisted Design of Pyramidal-Shaped 3D Reflectarray Antennas
PublikacjaReflectarrays (RAs) have been attracting considerable interest in the recent years due to their appealing features, in particular, a possibility of realizing pencil-beam radiation patterns, as in the phased arrays, but without the necessity of incorporating the feeding networks. These characteristics make them attractive solutions, among others, for satellite communications or mobile radar antennas. Notwithstanding, available microstrip...
-
Towards Knowledge Sharing Oriented Adaptive Control
PublikacjaIn this paper, we propose a knowledge sharing oriented approach to enable a robot to reuse other robots' knowledge by adapting itself to the inverse dynamics model of the knowledge-sharing robot. The purpose of this work is to remove the heavy fine-tuning procedure required before using a new robot for a task via reusing other robots' knowledge. We use the Neural Knowledge DNA (NK-DNA) to help robots gain empirical knowledge and...
-
Aestheticization of Flowcharts
PublikacjaOne of the important issues of diagrams is their aesthetics. In this paper a method of its formalization for freehand drawn flowcharts is proposed. In order to formalize the evaluation of flowcharts' aesthetics a criterion consisting of several measures is proposed. Based on this criterion the algorithms for automatic optimization of flowcharts' appearance are proposed.
-
Comparative analysis of spectral and cepstral feature extraction techniques for phoneme modelling
PublikacjaPhoneme parameter extraction framework based on spectral and cepstral parameters is proposed. Using this framework, the phoneme signal is divided into frames and Hamming window is used. The performances are evaluated for recognition of Lithuanian vowel and semivowel phonemes. Different feature sets without noise as well as at different level of noise are considered. Two classical machine learning methods (Naive Bayes and Support...
-
Dynamic Route Discovery Using Modified Grasshopper Optimization Algorithm in Wireless Ad-Hoc Visible Light Communication Network
PublikacjaIn recent times, visible light communication is an emerging technology that supports high speed data communication for wireless communication systems. However, the performance of the visible light communication system is impaired by inter symbol interference, the time dispersive nature of the channel, and nonlinear features of the light emitting diode that significantly reduces the bit error rate performance. To address these problems,...
-
CNN Architectures for Human Pose Estimation from a Very Low Resolution Depth Image
PublikacjaThe paper is dedicated to proposing and evaluating a number of convolutional neural network architectures for calculating a multiple regression on 3D coordinates of human body joints tracked in a single low resolution depth image. The main challenge was to obtain a high precision in case of a noisy and coarse scan of the body, as observed by a depth sensor from a large distance. The regression network was expected to reason about...
-
Restricted open shop scheduling
PublikacjaIn the real applications the open shop scheduling models often require some additional constraints and adequate models. We concern the restrictions in the open shop scheduling related to an instance of the problem and to a feasible solution. Precisely, we require that each jobs consists of the bounded number of operations and each machine has a bounded load (i.e., the total number of operations executed on this machine in a schedule)....
-
A compact smart sensor based on a neural classifier for objects modeled by Beaunier's model
PublikacjaA new solution of a smart microcontroller sensor based on a simple direct sensor-microcontroller interface for technical objects modeled by two-terminal networks and by the Beaunier’s model of anticorrosion coating is proposed. The tested object is stimulated by a square pulse and its time voltage response is sampled four times by the internal ADC of microcontroller. A neural classifier based on measurement data classifies the...