Filtry
wszystkich: 2360
wybranych: 1910
-
Katalog
- Publikacje 1910 wyników po odfiltrowaniu
- Czasopisma 57 wyników po odfiltrowaniu
- Konferencje 40 wyników po odfiltrowaniu
- Wydawnictwa 1 wyników po odfiltrowaniu
- Osoby 69 wyników po odfiltrowaniu
- Projekty 5 wyników po odfiltrowaniu
- Kursy Online 18 wyników po odfiltrowaniu
- Wydarzenia 3 wyników po odfiltrowaniu
- Dane Badawcze 257 wyników po odfiltrowaniu
Filtry wybranego katalogu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: CONVOLUTIONAL NEURAL NETWORK
-
Neural network modelling of the influence of channelopathies on reflex visual attention
Publikacja -
NIRCa: An artificial neural network-based insulin resistance calculator
Publikacja -
Energy-Efficient Neural Network Inference with Microcavity Exciton Polaritons
Publikacja -
Neural network approach to 2D Kalman filtering in image processing
Publikacja -
Artificial neural network based sensorless control ofinduction motor.
PublikacjaW artykule przedstawiono bezczujnikowy układ sterowania silnikiem indukcyjnym wykorzystujący sztuczne sieci neuronowe (ANN). Sieć neuronową wykorzystano w regulatorze prędkości silnika. Zaprezentowano wyniki badań symulacyjnych.
-
The fuzzy neural network: application for trends in river pollution prediction
PublikacjaPraca przedstawia zastosowanie rozmytych sieci neuronowych do przygotowywania prognoz zmian w stężeniu zanieczyszczeń w rzekach. Opisane są pokrótce inne narzędzia stosowane w tym celu.
-
Application of a fuzzy neural network for river water quality prediction
PublikacjaMonitoring i modelowanie zmian w jakości wód powierzchniowych stanowią jeden z kluczowych elementów monitoringu i zarządzania ochroną środowiska na skalę globalną. Kontrolowanie tak złożonych i nieliniowych w swojej charakterystyce obiektów, jakimi są rzeki, jest trudnym zadaniem. Zazwyczaj do tego celu wykorzystuje się modele matematyczne, jednak czasem wymagają one bardzo dużej ilości danych, lub czas oczekiwania na odpowiedź...
-
Smart Approach for Glioma Segmentation in Magnetic Resonance Imaging using Modified Convolutional Network Architecture (U-NET)
PublikacjaSegmentation of a brain tumor from magnetic resonance multimodal images is a challenging task in the field of medical imaging. The vast diversity in potential target regions, appearance and multifarious intensity threshold levels of various tumor types are few of the major factors that affect segmentation results. An accurate diagnosis and its treatment demand strict delineation of the tumor affected tissues. Herein, we focus on...
-
Neural network model of ship magnetic signature for different measurement depths
PublikacjaThis paper presents the development of a model of a corvette-type ship’s magnetic signature using an artificial neural network (ANN). The capabilities of ANNs to learn complex relationships between the vessel’s characteristics and the magnetic field at different depths are proposed as an alternative to a multi-dipole model. A training dataset, consisting of signatures prepared in finite element method (FEM) environment Simulia...
-
Emotion Recognition from Physiological Channels Using Graph Neural Network
PublikacjaIn recent years, a number of new research papers have emerged on the application of neural networks in affective computing. One of the newest trends observed is the utilization of graph neural networks (GNNs) to recognize emotions. The study presented in the paper follows this trend. Within the work, GraphSleepNet (a GNN for classifying the stages of sleep) was adjusted for emotion recognition and validated for this purpose. The...
-
ReFlexeNN - the Wearable EMG Interface with Neural Network Based Gesture Classification
PublikacjaThe electromyographic activity of muscles was measured using a wireless biofeedback device. The aim of the study was to examine the possibility of creating an automatic muscle tension classifier. Several measurement series were conducted and the participant performed simple physical exercises - forcing the muscle to increase its activity accordingly to the selected scale. A small wireless device was attached to the electrodes placed...
-
Comparison of the Ability of Neural Network Model and Humans to Detect a Cloned Voice
PublikacjaThe vulnerability of the speaker identity verification system to attacks using voice cloning was examined. The research project assumed creating a model for verifying the speaker’s identity based on voice biometrics and then testing its resistance to potential attacks using voice cloning. The Deep Speaker Neural Speaker Embedding System was trained, and the Real-Time Voice Cloning system was employed based on the SV2TTS, Tacotron,...
-
Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
PublikacjaGlobal sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based...
-
Artificial-Neural-Network-Based Sensorless Nonlinear Control of Induction Motors
Publikacja -
An application of the TCRBF neural network in multi-node fault diagnosis method
PublikacjaPrzedstawiono nową metodę samo-testowania części analogowej w systemach elektronicznych sterowanych mikrokontrolerami. Układ badany pobudzany jest przebiegiem sinusoidalnym przez generator zamontowany w systemie, a jego odpowiedź jest próbkowana w wybranych węzłach przez wewnętrzny przetwornik A/C mikrokontrolera. Detekcja i lokalizacja uszkodzenia jest dokontwana przez sieć neuronową typu TCRBF. Procedurę diagnostyczną zaimplementowano...
-
Diagnostic potential for a serum miRNA neural network for detection of ovarian cancer
Publikacja -
Ultracapacitor modeling and control with discrete fractional order artificial neural network
Publikacja -
Artificial neural network controller for underwater ship hull operation robot.
PublikacjaZaproponowano model matematyczny pojazdu podwodnego, który w uproszczonej wersji spełnia warunki dynamiki odpowiadające głowicy roboczej podwodnego robota. Uwzględniono niektóre czynniki oddziałujące na ruch podwodnej głowicy roboczej, jak np. gęstość wody oraz siły odśrodkowe i wypornościowe. Przedstawiono układ sterowania, w którym zastosowano regulator oparty na bazie sieci neuronowych, za pomocą którego można sterować...
-
On thermal and Flow Expert Systems Based on Artificial Neural Network (ANN)
PublikacjaZaprezentowano możliwość realizacji jednego z zadań systemów eksperckich, polegającego na określaniu rozmiaru eksploatacyjnej degradacji parametrów geometrycznych układów łopatkowych turbin. Dyskusję przeprowadzono w oparciu o zastosowanie wybranego typu sztucznej sieci neuronowej (SSN). Badano jakość i dokładność polegającą na dobrej identyfikacji rozmiaru degradacji przez tę wybraną SSN wykrywającą rozmiar degradacji geometrycznej....
-
Neural Network Application for Recognition of Geometry Degradation of Power Cycle Components
PublikacjaPrzedyskutowano problem rozpoznawania degradacji geometrycznej. Skuteczne zastosowanie wybranego typu sieci neuronowej (SSN) jest prezentowane w referacie. SSN wykrywająca typy degradacji geometrycznej wykazała wysoką jakość. Pokazano pewną możliwość ekstrapolacji takich SSN. Pokazano możliwość wykrywania typów degradacji geometrycznej nawet w przypadku pozyskiwania niepełnych danych pomiarowych.
-
A neural network based system for soft fault diagnosis in electronic circuits
PublikacjaW artykule przedstawiono system do diagnostyki uszkodzeń parametrycznych w układach elektronicznych. W systemie zaimplementowano słownikową metodę lokalizacji uszkodzeń, bazującą na pomiarach w dziedzinie częstotliwości przeprowadzanych za pomocą analizatora transmitancji HP4192A. Rozważono główne etapy projektowania systemu: definiowanie modelu uszkodzeń, wybór optymalnych częstotliwosci pomiarowych, ekstrakcję cech diagnostycznych,...
-
Artificial Neural Network-Based Sensorless Nonlinear Control Of Induction Motors
PublikacjaW niniejszym artykule przedstawiono strukturę sztucznej sieci neuronowej służącej do korygowania działania układu estymacji prędkości kątowej wirnika. Odtworzona prędkość kątowa wirnika zostały wykorzystane w bezczujnikowym układzie sterowania silnikiem indukcyjnym pracującym w zamkniętej pętli sprzężenia prędkościowego.Przedstawiono wyniki badań eksperymentalnych z silnikiem o mocy 1,1kW.
-
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublikacjaThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
Diagnosing wind turbine condition employing a neural network to the analysis of vibroacoustic signals
PublikacjaIt is important from the economic point of view to detect damage early in the wind turbines before failures occur. For this purpose, a monitoring device was built that analyzes both acoustic signals acquired from the built-in non-contact acoustic intensity probe, as well as from the accelerometers, mounted on the internal devices in the nacelle. The signals collected in this way are used for long-term training of the autoencoder...
-
EPILEPTIC BEHAVIOR WITH A DISTINGUISHED PREICTAL PERIOD IN A LARGE-SCALE NEURAL NETWORK MODEL
PublikacjaWe present a neural network model capable of reproducing focal epileptic behavior. An important property of our model is the distinguished preictal state. This novel feature may shed light on the pathologi-cal mechanisms of seizure generation and, in perspective, help develop new therapeutic strategies to manage refractory partial epilepsy.
-
Development of a tropical disease diagnosis system using artificial neural network and GIS
PublikacjaExpert systems for diagnosis of tropical diseases have been developed and implemented for over a decade with varying degrees of success. While the recent introduction of artificial neural networks has helped to improve the diagnosis accuracy of such systems, this aspect is still negatively affected by the number of supported diseases. A large number of supported diseases usually corresponds to a high number of overlapping symptoms,...
-
Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors
PublikacjaIn the paper we provide thorough benchmarking of deep neural network (DNN) training on modern multi- and many-core Intel processors in order to assess performance differences for various deep learning as well as parallel computing parameters. We present performance of DNN training for Alexnet, Googlenet, Googlenet_v2 as well as Resnet_50 for various engines used by the deep learning framework, for various batch sizes. Furthermore,...
-
Adaptive Hyperparameter Tuning within Neural Network-based Efficient Global Optimization
PublikacjaIn this paper, adaptive hyperparameter optimization (HPO) strategies within the efficient global optimization (EGO) with neural network (NN)-based prediction and uncertainty (EGONN) algorithm are proposed. These strategies utilize Bayesian optimization and multiarmed bandit optimization to tune HPs during the sequential sampling process either every iteration (HPO-1itr) or every five iterations (HPO-5itr). Through experiments using...
-
Comparison of Selected Neural Network Models Used for Automatic Liver Tumor Segmentation
PublikacjaAutomatic and accurate segmentation of liver tumors is crucial for the diagnosis and treatment of hepatocellular carcinoma or metastases. However, the task remains challenging due to imprecise boundaries and significant variations in the shape, size, and location of tumors. The present study focuses on tumor segmentation as a more critical aspect from a medical perspective, compared to liver parenchyma segmentation, which is the...
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublikacjaThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
Leveraging Training Strategies of Artificial Neural Network for Classification of Multiday Electromyography Signals
Publikacja -
Application of fuzzy neural network for supporting measurements and control in a wastewater treatment plant
PublikacjaOczyszczanie ścieków jest jednym z ważniejszych aspektów ochrony środowiska. Nowoczesne systemy kontroli w oczyszczalniach ścieków pozwalają na poprawę jakości procesu oczyszczania redukując jednocześnie koszty. Systemy kontroli i optymalizacji jakie odkilku lat opracowuje się dla oczyszczalni ścieków, bazują zazwyczaj na skomplikowanych modelach matematycznych. Kluczowym problemem w zastosowaniu tych systemów jest duża liczba...
-
An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes
PublikacjaA problem related to the development of algorithms designed to find the structure of artificial neural network used for behavioural (black-box) modelling of selected dynamic processes has been addressed in this paper. The research has included four original proposals of algorithms dedicated to neural network architecture search. Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and...
-
Evolving neural network as a decision support system — Controller for a game of “2048” case study
PublikacjaThe paper proposes an approach to designing the neuro-genetic self-learning decision support system. The system is based on neural networks being adaptively learned by evolutionary mechanism, forming an evolved neural network. Presented learning algorithm enables for a selection of the neural network structure by establishing or removing of connections between the neurons, and then for a finding the beast suited values of the network...
-
Artificial Neural Network in Forecasting the Churn Phenomena Among Costumers of IT and Power Supply Services
PublikacjaThis paper presents an attempt to use an artificial neural network to investigate the churn phenomenon among the customers of a telecommunications operator. An attempt was made to create a data model based on the customer lifetime value (CLV) rather than on activity alone. A multilayered artificial neural network was used for the experiments. The results yielded a 99% successful identification rate for customers in no danger of...
-
TOXIC GASES IDENTIFICATION USING SINGLE ELECTROCATALYTIC SENSOR RESPONSES AND ARTIFICIAL NEURAL NETWORK
PublikacjaThe need for precise detection of toxic gases drives development of new gas sensors structures and methods of processing the output signals from the sensors. In literature, artificial neural networks are considered as one of the most effective tool for the analysis of gas sensors or sensors arrays responses. In this paper a method of toxic gas components identification using a electrocatalytic gas sensor as a detector and an artificial...
-
Neural network based algorithm for hand gesture detection in a low-cost microprocessor applications
PublikacjaIn this paper the simple architecture of neural network for hand gesture classification was presented. The network classifies the previously calculated parameters of EMG signals. The main goal of this project was to develop simple solution that is not computationally complex and can be implemented on microprocessors in low-cost 3D printed prosthetic arms. As the part of conducted research the data set EMG signals corresponding...
-
Optical Sensor Based Gestures Inference Using Recurrent Neural Network in Mobile Conditions
PublikacjaIn this paper the implementation of recurrent neural network models for hand gesture recognition on edge devices was performed. The models were trained with 27 hand gestures recorded with the use of a linear optical sensor consisting of 8 photodiodes and 4 LEDs. Different models, trained off-line, were tested in terms of different network topologies (different number of neurons and layers) and different effective sampling frequency...
-
APPLICATION OF STATISTICAL FEATURES AND MULTILAYER NEURAL NETWORK TO AUTOMATIC DIAGNOSIS OF ARRHYTHMIA BY ECG SIGNALS
PublikacjaAbnormal electrical activity of heart can produce a cardiac arrhythmia. The electrocardiogram (ECG) is a non-invasive technique which is used as a diagnostic tool for cardiac diseases. Non-stationarity and irregu- larity of heartbeat signal imposes many difficulties to clinicians (e.g., in the case of myocardial infarction arrhythmia). Fortunately, signal processing algorithms can expose hidden information within ECG signal contaminated...
-
Predicting Ice Phenomena in a River Using the Artificial Neural Network and Extreme Gradient Boosting
PublikacjaForecasting ice phenomena in river systems is of great importance because these phenomena are a fundamental part of the hydrological regime. Due to the stochasticity of ice phenomena, their prediction is a difficult process, especially when data sets are sparse or incomplete. In this study, two machine learning models—Multilayer Perceptron Neural Network (MLPNN) and Extreme Gradient Boosting (XGBoost)—were developed to predict...
-
Selection of an artificial pre-training neural network for the classification of inland vessels based on their images
PublikacjaArtificial neural networks (ANN) are the most commonly used algorithms for image classification problems. An image classifier takes an image or video as input and classifies it into one of the possible categories that it was trained to identify. They are applied in various areas such as security, defense, healthcare, biology, forensics, communication, etc. There is no need to create one’s own ANN because there are several pre-trained...
-
Design and Analysis of Artificial Neural Network (ANN) Models for Achieving Self-Sustainability in Sanitation
PublikacjaThe present study investigates the potential of using fecal ash as an adsorbent and demonstrates a self-sustaining, optimized approach for urea recovery from wastewater streams. Fecal ash was prepared by heating synthetic feces to 500 °C and then processing it as an adsorbent for urea adsorption from synthetic urine. Since this adsorption approach based on fecal ash is a promising alternative for wastewater treatment, it increases...
-
Dataset Related Experimental Investigation of Chess Position Evaluation Using a Deep Neural Network
PublikacjaThe idea of training Articial Neural Networks to evaluate chess positions has been widely explored in the last ten years. In this paper we investigated dataset impact on chess position evaluation. We created two datasets with over 1.6 million unique chess positions each. In one of those we also included randomly generated positions resulting from consideration of potentially unpredictable chess moves. Each position was evaluated...
-
Fetal Brain Imaging: A Composite Neural Network Approach for Keyframe Detection in Ultrasound Videos
Publikacja -
Taking decisions in the diagnostic intelligent systems on the basis information from an artificial neural network
Publikacja -
Artificial Neural Network (ANN)-Based Voltage Stability Prediction of Test Microgrid Grid
Publikacja -
Neural network based control system architecture proposal for underwatership hull cleaning robot.
PublikacjaPrzedstawiono model matematyczny podwodnej głowicy roboczej, oraz określono metodę jej pozycjonowania i orientacji w lokalnym środowisku. Zaproponowano architekturę układu sterowania, opartego na bazie sieci neuronowych, za pomocą którego można sterować podwodnym robotem, przeznaczonym do czyszczenia burt statku.
-
An application of neural network for Structural Health Monitoring of an adaptive wing with an array of FBG sensors
PublikacjaW pracy przedstwiono możliwości zastoswania sieci czujników FBG i sztucznych sieci neuronowych do detekcji uszkodzeń w poszyciu adaptacyjnego skrzydła.
-
Monitoring Regenerative Heat Exchanger in Steam Power Plant by Making Use of the Recurrent Neural Network
PublikacjaArtificial Intelligence algorithms are being increasingly used in industrial applications. Their important function is to support operation of diagnostic systems. This paper pesents a new approach to the monitoring of a regenerative heat exchanger in a steam power plant, which is based on a specific use of the Recurrent Neural Network (RNN). The proposed approach was tested using real data. This approach can be easily adapted to...
-
Design of Microstrip UWB Balun Using Quasi-TEM Approach Aided by the Artificial Neural Network
PublikacjaThe design procedure for UWB balun realized in the microstrip technology is proposed in the paper. The procedure applies Artificial Neural Network which corrects the dimensions of the approximate design found by appropriate scaling of the dimensions of the prototype. The scale coefficients for longitudinal and transverse dimensions of microstrip lines are determined from electromagnetic modeling based on transmission line equations....