Filtry
wszystkich: 23039
wybranych: 1871
-
Katalog
- Publikacje 1871 wyników po odfiltrowaniu
- Czasopisma 551 wyników po odfiltrowaniu
- Konferencje 24 wyników po odfiltrowaniu
- Wydawnictwa 2 wyników po odfiltrowaniu
- Osoby 80 wyników po odfiltrowaniu
- Projekty 9 wyników po odfiltrowaniu
- Kursy Online 23 wyników po odfiltrowaniu
- Wydarzenia 2 wyników po odfiltrowaniu
- Dane Badawcze 20477 wyników po odfiltrowaniu
Filtry wybranego katalogu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: medical image classification
-
Image Classification Based on Video Segments
PublikacjaIn the dissertation a new method for improving the quality of classifications of images in video streams has been proposed and analyzed. In multiple fields concerning such a classification, the proposed algorithms focus on the analysis of single frames. This class of algorithms has been named OFA (One Frame Analyzed).In the dissertation, small segments of the video are considered and each image is analyzed in the context of its...
-
Medical Image Dataset Annotation Service (MIDAS)
PublikacjaMIDAS (Medical Image Dataset Annotation Service) is a custom-tailored tool for creating and managing datasets either for deep learning, as well as machine learning or any form of statistical research. The aim of the project is to provide one-fit-all platform for creating medical image datasets that could easily blend in hospital's workflow. In our work, we focus on the importance of medical data anonimization, discussing the...
-
Dependable Integration of Medical Image Recognition Components
PublikacjaComputer driven medical image recognition may support medical doctors in the diagnosis process, but requires high dependability considering potential consequences of incorrect results. The paper presentsa system that improves dependability of medical image recognition by integration of results from redundant components. The components implement alternative recognition algorithms of diseases in thefield of gastrointestinal endoscopy....
-
Data augmentation for improving deep learning in image classification problem
PublikacjaThese days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...
-
ColorNephroNet: Kidney tumor malignancy prediction using medical image colorization
PublikacjaRenal tumor malignancy classification is one of the crucial tasks in urology, being a primary factor included in the decision of whether to perform kidney removal surgery (nephrectomy) or not. Currently, tumor malignancy prediction is determined by the radiological diagnosis based on computed tomography (CT) images. However, it is estimated that up to 16% of nephrectomies could have been avoided because the tumor that had been...
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublikacjaIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
High Quality Medical Image-Guides By Mosaic-Assembling Optical Fibre Technology
Publikacja -
Data Domain Adaptation in Federated Learning in the Breast Mammography Image Classification Problem
PublikacjaWe are increasingly striving to introduce modern artificial intelligence techniques in medicine and elevate medical care, catering to both patients and specialists. An essential aspect that warrants concurrent development is the protection of personal data, especially with technology's advancement, along with addressing data disparities to ensure model efficacy. This study assesses various domain adaptation techniques and federated...
-
Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
PublikacjaDeployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...
-
Combined method of multibeam sonar signal processing and image analysis for seafloor classification
PublikacjaThe combined approach to seafloor characterisation was investigated. It relies on calculation of several descriptors (parameters) related to seabed type using three types of multibeam sonar data obtained during seafloor sensing: 1) the grey-level sonar images (echograms) of seabed, 2) the 3D model of the seabed surface which consists of bathymetric data, 3) the set of time domain bottom echo envelopes received in the consecutive...
-
Medical Image Segmentation Using Deep Semantic-based Methods: A Review of Techniques, Applications and Emerging Trends
PublikacjaSemantic-based segmentation (Semseg) methods play an essential part in medical imaging analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is classified into an instance, where each class is corresponded by an instance. In particular, the semantic segmentation can be used by many medical experts in the domain of radiology, ophthalmologists, dermatologist, and image-guided radiotherapy. The authors...
-
Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm
PublikacjaSatellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification...
-
Spatiotemporal Assessment of Satellite Image Time Series for Land Cover Classification Using Deep Learning Techniques: A Case Study of Reunion Island, France
PublikacjaCurrent Earth observation systems generate massive amounts of satellite image time series to keep track of geographical areas over time to monitor and identify environmental and climate change. Efficiently analyzing such data remains an unresolved issue in remote sensing. In classifying land cover, utilizing SITS rather than one image might benefit differentiating across classes because of their varied temporal patterns. The aim...
-
Акустическое изображение омонима этнического языка как входной элемент формальной классификации межъязыковой омонимии [The acoustic image of ethnic homonyms as an input element in formal classification of interlinguistic homonymy]
Publikacja -
Акустическое изображение омонима этнического языка как входной элемент формальной классификации межъязыковой омонимии [The acoustic image of ethnic homonyms as an input element in formal classification of interlinguistic homonymy]
Publikacja -
Instrument detection and pose estimation with rigid part mixtures model in video-assisted surgeries
PublikacjaLocalizing instrument parts in video-assisted surgeries is an attractive and open computer vision problem. A working algorithm would immediately find applications in computer-aided interventions in the operating theater. Knowing the location of tool parts could help virtually augment visual faculty of surgeons, assess skills of novice surgeons, and increase autonomy of surgical robots. A surgical tool varies in appearance due to...
-
BIG DATA SIGNIFICANCE IN REMOTE MEDICAL DIAGNOSTICS BASED ON DEEP LEARNING TECHNIQUES
PublikacjaIn this paper we discuss the evaluation of neural networks in accordance with medical image classification and analysis. We also summarize the existing databases with images which could be used for training deep models that can be later utilized in remote home-based health care systems. In particular, we propose methods for remote video-based estimation of patient vital signs and other health-related parameters. Additionally, potential...
-
An Overview of the Development of a Real-Time System for Endoscopic Video Classification
PublikacjaThe article presents the results of improving endoscopic image classification algorithms in an effort towards applying them in a real-time diagnosis supporting system. Methods for the detection and removal of personal data are presented and discussed. The currently developed recognition algorithms have been improved in terms of accuracy and performance to make them suitable for a real-life implementation. Their test results are...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublikacjaRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Real-Time Facial Features Detection from Low Resolution Thermal Images with Deep Classification Models
PublikacjaDeep networks have already shown a spectacular success for object classification and detection for various applications from everyday use cases to advanced medical problems. The main advantage of the classification models over the detection models is less time and effort needed for dataset preparation, because classification networks do not require bounding box annotations, but labels at the image level only. Yet, after passing...
-
Segmentation-Based BI-RADS ensemble classification of breast tumours in ultrasound images
PublikacjaBackground: The development of computer-aided diagnosis systems in breast cancer imaging is exponential. Since 2016, 81 papers have described the automated segmentation of breast lesions in ultrasound images using arti- ficial intelligence. However, only two papers have dealt with complex BI-RADS classifications. Purpose: This study addresses the automatic classification of breast lesions into binary classes (benign vs. ma- lignant)...
-
A Mammography Data Management Application for Federated Learning
PublikacjaThis study aimed to develop and assess an application designed to enhance the management of a local client database consisting of mammographic images with a focus on ensuring that images are suitably and uniformly prepared for federated learning applications. The application supports a comprehensive approach, starting with a versatile image-loading function that supports DICOM files from various medical imaging devices and settings....
-
Optimal selection of input features and an acompanying neural network structure for the classification purposes - skin lesions case study
PublikacjaMalignant melanomas are the most deadly type of skin cancers however detected early enough give a high chances for successful treatment. The last years saw the dynamic growth of interest of automatic computer-aided skin cancer diagnosis. Every month brings new research results on new approaches to this problem, new methods of preprocessing, new classifiers, new ideas to follow etc. In particular, the rapid development of dermatoscopy,...
-
Explainable AI for Inspecting Adversarial Attacks on Deep Neural Networks
PublikacjaDeep Neural Networks (DNN) are state of the art algorithms for image classification. Although significant achievements and perspectives, deep neural networks and accompanying learning algorithms have some important challenges to tackle. However, it appears that it is relatively easy to attack and fool with well-designed input samples called adversarial examples. Adversarial perturba-tions are unnoticeable for humans. Such attacks...
-
The Hough transform in the classification process of inland ships
PublikacjaThis article presents an analysis of the possibilities of using image processing methods for feature extraction that allows kNN classification based on a ship’s image delivered from an on-water video surveillance system. The subject of the analysis is the Hough transform which enables the detection of straight lines in an image. The recognized straight lines and the information about them serve as features in the classification...
-
Systematic approach to binary classification of images in video streams using shifting time windows
Publikacjain the paper, after pointing out of realistic recordings and classifications of their frames, we propose a new shifting time window approach for improving binary classifications. We consider image classification in tewo steps. in the first one the well known binary classification algorithms are used for each image separately. In the second step the results of the previous step mare analysed in relatively short sequences of consecutive...
-
Objects classification based on their physical sizes for detection of events in camera images
PublikacjaIn the paper, a method of estimation of the physical sizes of the objects tracked in the video surveillance system, and a simple module for object classification based on the estimated physical sizes, are presented. The results of object classification are then used for automatic detection of various types of events in the camera image.
-
Deep convolutional neural network for predicting kidney tumour malignancy
PublikacjaPurpose: According to the statistics, up to 15-20% of removed solid kidney tumors turn out to be benign in postoperative histopathological examination, despite having been identified as malignant by a radiologist. The aim of the research was to limit the number of unnecessary nephrectomies of benign tumors. Methods or Background: We propose a machine-aided diagnostic system for kidney...
-
Potential and Use of the Googlenet Ann for the Purposes of Inland Water Ships Classification
PublikacjaThis article presents an analysis of the possibilities of using the pre-degraded GoogLeNet artificial neural network to classify inland vessels. Inland water authorities monitor the intensity of the vessels via CCTV. Such classification seems to be an improvement in their statutory tasks. The automatic classification of the inland vessels from video recording is a one of the main objectives of the Automatic Ship Recognition and...
-
Analyzing the Impact of Simulated Multispectral Images on Water Classification Accuracy by Means of Spectral Characteristics
PublikacjaRemote sensing is widely applied in examining the parameters of the state and quality of water. Spectral characteristics of water are strictly connected with the dispersion of electromagnetic radiation by suspended matter and the absorp-tion of radiation by water and chlorophyll a and b.Multispectral sensor ALI has bands within the ranges of electromagnetic radia-tion: blue and infrared, absent in sensors such as Landsat, SPOT,...
-
THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN
PublikacjaIn the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...
-
Active Dynamic Thermography in Medical Diagnostics
PublikacjaThis is an overview of active thermal imaging methods in medical diagnostics using external thermal stimulation. In this chapter, several clinical cases diagnosed using the active dynamic thermography method, ADT, are presented. Features of this technology are discussed and main advantages underlined. Applications in skin burn diagnostics and quantitative evaluation leading to modern classification of burned patients for further...
-
The parallel environment for endoscopic image analysis
PublikacjaThe jPVM-oriented environment to support high performance computing required for the Endoscopy Recommender System (ERS) is defined. SPMD model of image matching is considered and its two implementations are proposed: Lexicographical Searching Algorithm (LSA) and Gradient Serching Algorithm (GSA). Three classes of experiments are considered and the relative degree of similarity and execution time of each algorithm are analysed....
-
seafloor characterisation combined approach using multibeam sonar echo signal processing and image analysis
PublikacjaThe authors propose the approach to seafloor characterisation which relies on the combined, concurrent use of two different techniques: (i) multibeam sonar image analysis and (ii) multibeam seabed echoes processing. The first technique is based on constructing the grey-level sonar images of the seabed extracted from the echoes received in the consecutive soundings. Then, the set of parameters describing the local region of sonar...
-
Art and Healthcare - Healing Potential of Artistic Interventions in Medical Settings
PublikacjaThe stereotype of a machine for healing seems to be well rooted in common thinking and social perception of hospital buildings. The technological aspect of healthcare architecture has been influenced for several years by three major factors. The first is linked to the necessity of providing safety and security in the environment of elevated epidemiological risk. The second concerns the need for incorporating advanced technology...
-
Selection of an artificial pre-training neural network for the classification of inland vessels based on their images
PublikacjaArtificial neural networks (ANN) are the most commonly used algorithms for image classification problems. An image classifier takes an image or video as input and classifies it into one of the possible categories that it was trained to identify. They are applied in various areas such as security, defense, healthcare, biology, forensics, communication, etc. There is no need to create one’s own ANN because there are several pre-trained...
-
Multi-Aspect Quality Assessment Of Mobile Image Classifiers For Companion Applications In The Publishing Sector
PublikacjaThe paper presents the problem of quality assessment of image classifiers used in mobile phones for complimentary companion applications. The advantages of using this kind of applications have been described and a Narrator on Demand (NoD) functionality has been described as one of the examples, where the application plays an audio file related to a book page that is physically in front of the phone's camera. For such a NoD application,...
-
A survey of automatic speech recognition deep models performance for Polish medical terms
PublikacjaAmong the numerous applications of speech-to-text technology is the support of documentation created by medical personnel. There are many available speech recognition systems for doctors. Their effectiveness in languages such as Polish should be verified. In connection with our project in this field, we decided to check how well the popular speech recognition systems work, employing models trained for the general Polish language....
-
On the Role of Polarimetric Decomposition and Speckle Filtering Methods for C-Band SAR Wetland Classification Purposes
PublikacjaPrevious wetlands studies have thoroughly verified the usefulness of data from synthetic aperture radar (SAR) sensors in various acquisition modes. However, the effect of the processing parameters in wetland classification remains poorly explored. In this study, we investigated the influence of speckle filters and decomposition methods with different combinations of filter and decomposition windows sizes on classification accuracy....
-
How to Sort Them? A Network for LEGO Bricks Classification
PublikacjaLEGO bricks are highly popular due to the ability to build almost any type of creation. This is possible thanks to availability of multiple shapes and colors of the bricks. For the smooth build process the bricks need to properly sorted and arranged. In our work we aim at creating an automated LEGO bricks sorter. With over 3700 different LEGO parts bricks classification has to be done with deep neural networks. The question arises...
-
Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks
PublikacjaThe presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods....
-
Seafloor characterisation using multibeam sonar echo signal processing and image analysis
PublikacjaThe authors propose the approach to multibeam seafloor characterisation which relies on the combined, concurrent use of two different techniques of multibeam sonar data processing. The first one is based on constructing the grey-level sonar images of seabed using the echoes received in the consecutive beams. Then, the parameters describing the local region of sonar image, namely, the local standard deviation of a grey level, and...
-
A System for Heart Sounds Classification
PublikacjaThe future of quick and efficient disease diagnosis lays in the development of reliable non-invasive methods. As for the cardiac diseases – one of the major causes of death around the globe – a concept of an electronic stethoscope equipped with an automatic heart tone identification system appears to be the best solution. Thanks to the advancement in technology, the quality of phonocardiography signals is no longer an issue. However,...
-
Self-Supervised Learning to Increase the Performance of Skin Lesion Classification
PublikacjaTo successfully train a deep neural network, a large amount of human-labeled data is required. Unfortunately, in many areas, collecting and labeling data is a difficult and tedious task. Several ways have been developed to mitigate the problem associated with the shortage of data, the most common of which is transfer learning. However, in many cases, the use of transfer learning as the only remedy is insufficient. In this study,...
-
The Use of Liquid Crystal Thermography in Selected Technical and Medical Applications—Recent Development
PublikacjaThermochromic liquid crystals (TLC) and true-colour digital image processing have been successfully used in non-intrusive technical, industrial and biomedical studies and applications. Thin coatings of TLC at surfaces are utilized to obtain detailed temperature distributions and heat transfer rates for steady or transient processes. Liquid crystals also can be used to make the temperature and velocity fields in liquids visible...
-
Analogue CMOS ASICs in Image Processing Systems
PublikacjaIn this paper a survey of analog application specific integrated circuits (ASICs) for low-level image processing, called vision chips, is presented. Due to the specific requirements, the vision chips are designed using different architectures best suited to their functions. The main types of the vision chip architectures and their properties are presented and characterized on selected examples of prototype integrated circuits (ICs)...
-
Evaluation of Machine Learning Methods for the Experimental Classification and Clustering of Higher Education Institutions
PublikacjaHigher education institutions have a big impact on the future of skills supplied on the labour market. It means that depending on the changes in labour market, higher education institutions are making changes to fields of study or adding new ones to fulfil the demand on labour market. The significant changes on labour market caused by digital transformation, resulted in new jobs and new skills. Because of the necessity of computer...
-
How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image
PublikacjaThis study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation...
-
UPDRS tests for diagnosis of Parkinson's disease employing virtual-touchpad
PublikacjaThis paper presents a new approach to diagnosing Parkinson's disease. The progression of the disease can be measured by the UPDRS (Unified Parkinson Disease Rating Scale) scale which is used to evaluate motor and behavioral symptoms of Parkinson's disease. Hitherto the evaluation of the advancement of the disease in the UPDRS scale was made by a specialist through medical observation. The authors suggest a partial automation of...
-
Deep learning based thermal image segmentation for laboratory animals tracking
PublikacjaAutomated systems for behaviour classification of laboratory animals are an attractive alternative to manual scoring. However, the proper animals separation and tracking, especially when they are in close contact, is the bottleneck of the behaviour analysis systems. In this paper, we propose a method for the segmentation of thermal images of laboratory rats that are in close contact during social behaviour tests. For this, we are...