Filtry
wszystkich: 508
Wyniki wyszukiwania dla: DATASET QUALITY
-
AVHRR Level1CD covering Baltic Sea area year 2007
Dane BadawczeThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2011
Dane BadawczeThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2012
Dane BadawczeThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2008
Dane BadawczeThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2009
Dane BadawczeThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
Measurements of ultrasonic bulk and guided wave propagation in additively manufactured cubes and plates obtained by ultrasonic pulse velocity analyzer and scanning laser vibrometry
Dane BadawczeThe DataSet contains the results of measurements of ultrasonic wave propagation in additively manufactured samples made of polylactic acid (PLA). Three types of raster angles in two consecutive layers were assumed: 0°/90° (#1), 45°/-45° (#2) and 90°/90° (#3) with respect to the x-axis. For each printing variants a cubic sample (#C1-3) with dimensions...
-
Study on the student's perception of marketing activities undertaken by Gdansk and Mangalore
Dane BadawczeNowadays, the urban areas very often attract the poor and the unemployed, leading to the creation of neighbourhoods of poverty (slums) and other economic and social problems. All over the World cities include sustainable goals in their development strategies but the question is, whether the city development strategies foresee activities devoted also...
-
Residual MobileNets
PublikacjaAs modern convolutional neural networks become increasingly deeper, they also become slower and require high computational resources beyond the capabilities of many mobile and embedded platforms. To address this challenge, much of the recent research has focused on reducing the model size and computational complexity. In this paper, we propose a novel residual depth-separable convolution block, which is an improvement of the basic...
-
Expectation-Maximization Model for Substitution of Missing Values Characterizing Greenness of Organic Solvents
PublikacjaOrganic solvents are ubiquitous in chemical laboratories and the Green Chemistry trend forces their detailed assessments in terms of greenness. Unfortunately, some of them are not fully characterized, especially in terms of toxicological endpoints that are time consuming and expensive to be determined. Missing values in the datasets are serious obstacles, as they prevent the full greenness characterization of chemicals. A featured...
-
Analysis of results of large-scale multimodal biometric identity verification experiment
PublikacjaAn analysis of a large set of biometric data obtained during the enrolment and the verification phase in an experimental biometric system installed in bank branches is presented. Subjective opinions of bank clients and of bank tellers were also surveyed concerning the studied biometric methods in order to discover and to explore relations emerging from the obtained multimodal dataset. First, data acquisition and identity verification...
-
Hasse diagram as a green analytical metrics tool: ranking of methods for benzo[a]pyrene determination in sediments
PublikacjaThis study presents an application of the Hasse diagram technique (HDT) as the assessment tool to select the most appropriate analytical procedures according to their greenness or the best analytical performance. The dataset consists of analytical procedures for benzo[a]pyrene determination in sediment samples, which were described by 11 variables concerning their greenness and analytical performance. Two analyses with the HDT...
-
Adaptive Binarization of Metal Nameplate Images Using the Pixel Voting Approach
PublikacjaIn the paper, an application of the recently proposed approach to hybrid image binarization based on pixel voting is considered for industrial images. Since such images typically contain the text embossed or engraved in metal nameplates, often non-uniformly illuminated, a proper binarization of such images is usually much harder than for scanned document images, or even for the photos of text documents. Assuming that no single...
-
Neural network model of ship magnetic signature for different measurement depths
PublikacjaThis paper presents the development of a model of a corvette-type ship’s magnetic signature using an artificial neural network (ANN). The capabilities of ANNs to learn complex relationships between the vessel’s characteristics and the magnetic field at different depths are proposed as an alternative to a multi-dipole model. A training dataset, consisting of signatures prepared in finite element method (FEM) environment Simulia...
-
Driver fatigue detection method based on facial image analysis
PublikacjaNowadays, ensuring road safety is a crucial issue that demands continuous development and measures to minimize the risk of accidents. This paper presents the development of a driver fatigue detection method based on the analysis of facial images. To monitor the driver's condition in real-time, a video camera was used. The method of detection is based on analyzing facial features related to the mouth area and eyes, such as...
-
Instance segmentation of stack composed of unknown objects
PublikacjaThe article reviews neural network architectures designed for the segmentation task. It focuses mainly on instance segmentation of stacked objects. The main assumption is that segmentation is based on a color image with an additional depth layer. The paper also introduces the Stacked Bricks Dataset based on three cameras: RealSense L515, ZED2, and a synthetic one. Selected architectures: DeepLab, Mask RCNN, DEtection TRansformer,...
-
Photos and rendered images of LEGO bricks
PublikacjaThe paper describes a collection of datasets containing both LEGO brick renders and real photos. The datasets contain around 155,000 photos and nearly 1,500,000 renders. The renders aim to simulate real-life photos of LEGO bricks allowing faster creation of extensive datasets. The datasets are publicly available via the Gdansk University of Technology “Most Wiedzy” institutional repository. The source files of all tools used during...
-
Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data
PublikacjaThis paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...
-
LSA Is not Dead: Improving Results of Domain-Specific Information Retrieval System Using Stack Overflow Questions Tags
PublikacjaThe paper presents the approach to using tags from Stack Overflow questions as a data source in the process of building domain-specific unsupervised term embeddings. Using a huge dataset of Stack Overflow posts, our solution employs the LSA algorithm to learn latent representations of information technology terms. The paper also presents the Teamy.ai system, currently developed by Scalac company, which serves as a platform that...
-
The Belt and Road Initiative and export variety: 1996–2019
PublikacjaThis study examines the association between the Belt and Road Initiative (BRI) and export variety (EV). We propose three hypotheses on how BRI may foster export markets (destinations) or export product lines. The estimates are based on a dataset constructed specifically for this analysis, covering 183 countries and linked with trade data from 1996 to 2019. We apply the instrumental variable (IV) approach in regressions for covering the...
-
Occurrence of Cyanobacteria in the Gulf of Gdańsk (2008–2009)
PublikacjaBlooms of cyanobacteria develop each summer in the Baltic Sea. Collecting complete data on this phenomenon is helpful in understanding the changes taking place in the Baltic Sea and forecasting the occurrence of these phenomena in the future. This dataset includes unpublished information about the occurrence of cyanobacteria in the Gulf of Gdańsk (Southern Baltic) in 2008 and 2009. The presented data combines basic physic-ochemical...
-
How Specific Can We Be with k-NN Classifier?
PublikacjaThis paper discusses the possibility of designing a two stage classifier for large-scale hierarchical and multilabel text classification task, that will be a compromise between two common approaches to this task. First of it is called big-bang, where there is only one classifier that aims to do all the job at once. Top-down approach is the second popular option, in which at each node of categories’ hierarchy, there is a flat classifier...
-
A Bayesian regularization-backpropagation neural network model for peeling computations
PublikacjaA Bayesian regularization-backpropagation neural network (BRBPNN) model is employed to predict some aspects of the gecko spatula peeling, viz. the variation of the maximum normal and tangential pull-off forces and the resultant force angle at detachment with the peeling angle. K-fold cross validation is used to improve the effectiveness of the model. The input data is taken from finite element (FE) peeling results. The neural network...
-
Results of calibration of the piezoelectric scanner using the probe TGQ1
Dane BadawczeTeaching file. Results of calibration of the piezoelectric scanner using the probe TGQ1. Scanning in contact mode. NTEGRA Prima (NT-MDT) device. CSG probe 10.
-
The surface of a fragment of the structure of an integrated circuit in the semi-contact mode.
Dane BadawczeThe surface of a fragment of the structure of an integrated circuit. Topographic measurements in the semi-contact mode. NTEGRA Prima (NT-MDT) device. NSG 01 probe.
-
Car wash water reuse
Dane BadawczeThe resistance of automotive coatings to washing water recovered in 50% and 70% from wastewater generated at car wash was tested. The wastewater was purified in the ultrafiltration process using tubular polyvinylidene fluoride membranes (100 and 200 kDa) manufactured by PCI company. The membranes retained oil contamination and over 50% of surfactants....
-
Vehicle detector training with minimal supervision
PublikacjaRecently many efficient object detectors based on convolutional neural networks (CNN) have been developed and they achieved impressive performance on many computer vision tasks. However, in order to achieve practical results, CNNs require really large annotated datasets for training. While many such databases are available, many of them can only be used for research purposes. Also some problems exist where such datasets are not...
-
Automatic Threat Detection for Historic Buildings in Dark Places Based on the Modified OptD Method
PublikacjaHistoric buildings, due to their architectural, cultural, and historical value, are the subject of preservation and conservatory works. Such operations are preceded by an inventory of the object. One of the tools that can be applied for such purposes is Light Detection and Ranging (LiDAR). This technology provides information about the position, reflection, and intensity values of individual points; thus, it allows for the creation...
-
CNN Architectures for Human Pose Estimation from a Very Low Resolution Depth Image
PublikacjaThe paper is dedicated to proposing and evaluating a number of convolutional neural network architectures for calculating a multiple regression on 3D coordinates of human body joints tracked in a single low resolution depth image. The main challenge was to obtain a high precision in case of a noisy and coarse scan of the body, as observed by a depth sensor from a large distance. The regression network was expected to reason about...
-
INFLUENCE OF DATA NORMALIZATION ON THE EFFECTIVENESS OF NEURAL NETWORKS APPLIED TO CLASSIFICATION OF PAVEMENT CONDITIONS – CASE STUDY
PublikacjaIn recent years automatic classification employing machine learning seems to be in high demand for tele-informatic-based solutions. An example of such solutions are intelligent transportation systems (ITS), in which various factors are taken into account. The subject of the study presented is the impact of data pre-processing and normalization on the accuracy and training effectiveness of artificial neural networks in the case...
-
Methodology of Constructing and Analyzing the Hierarchical Contextually-Oriented Corpora
PublikacjaMethodology of Constructing and Analyzing the Hierarchical structure of the Contextually-Oriented Corpora was developed. The methodology contains the following steps: Contextual Component of the Corpora’s Structure Building; Text Analysis of the Contextually-Oriented Hierarchical Corpus. Main contribution of this study is the following: hierarchical structure of the Corpus provides advanced possibilities for identification of the...
-
Processing of LiDAR and Multibeam Sonar Point Cloud Data for 3D Surface and Object Shape Reconstruction
PublikacjaUnorganised point cloud dataset, as a transitional data model in several applications, usually contains a considerable amount of undesirable irregularities, such as strong variability of local point density, missing data, overlapping points and noise caused by scattering characteristics of the environment. For these reasons, further processing of such data, e.g. for construction of higher order geometric models of the topography...
-
Analysis of the Capability of Deep Learning Algorithms for EEG-based Brain-Computer Interface Implementation
PublikacjaMachine learning models have received significant attention for their exceptional performance in classifying electroencephalography (EEG) data. They have proven to be highly effective in extracting intricate patterns and features from the raw signal data, thereby contributing to their success in EEG classification tasks. In this study, we explore the possibilities of utilizing contemporary machine learning algorithms in decoding...
-
Driver’s Condition Detection System Using Multimodal Imaging and Machine Learning Algorithms
PublikacjaTo this day, driver fatigue remains one of the most significant causes of road accidents. In this paper, a novel way of detecting and monitoring a driver’s physical state has been proposed. The goal of the system was to make use of multimodal imaging from RGB and thermal cameras working simultaneously to monitor the driver’s current condition. A custom dataset was created consisting of thermal and RGB video samples. Acquired data...
-
Global value chains and wages under different wage setting mechanisms
PublikacjaThis study examines whether, and how, differences in wage bargaining schemes shape the relationship between global value chains (GVCs) and the wages of workers while considering both GVC participation and position in GVC. Our dataset is derived from the European Structure of Earnings Survey (SES), containing employee–employer data from 18 European countries, merged with sectoral data from the World Input-Output Database (WIOD)....
-
Intelligent Audio Signal Processing − Do We Still Need Annotated Datasets?
PublikacjaIn this paper, intelligent audio signal processing examples are shortly described. The focus is, however, on the machine learning approach and datasets needed, especially for deep learning models. Years of intense research produced many important results in this area; however, the goal of fully intelligent signal processing, characterized by its autonomous acting, is not yet achieved. Therefore, a review of state-of-the-art concerning...
-
Material for Automatic Phonetic Transcription of Speech Recorded in Various Conditions
PublikacjaAutomatic speech recognition (ASR) is under constant development, especially in cases when speech is casually produced or it is acquired in various environment conditions, or in the presence of background noise. Phonetic transcription is an important step in the process of full speech recognition and is discussed in the presented work as the main focus in this process. ASR is widely implemented in mobile devices technology, but...
-
Visual Content Learning in a Cognitive Vision Platform for Hazard Control (CVP-HC)
PublikacjaThis work is part of an effort for the development of a Cognitive Vision Platform for Hazard Control (CVP-HC) for applications in industrial workplaces, adaptable to a wide range of environments. The paper focuses on hazards resulted from the nonuse of personal protective equipment (PPE). Given the results of previous analysis of supervised techniques for the problem of classification of a few PPE (boots, hard hats, and gloves...
-
Focus on Misinformation: Improving Medical Experts’ Efficiency of Misinformation Detection
PublikacjaFighting medical disinformation in the era of the global pandemic is an increasingly important problem. As of today, automatic systems for assessing the credibility of medical information do not offer sufficient precision to be used without human supervision, and the involvement of medical expert annotators is required. Thus, our work aims to optimize the utilization of medical experts’ time. We use the dataset of sentences taken...
-
A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification
PublikacjaThe article concerns the automation of vessel movement anomaly detection for maritime and coastal traffic safety services. Deep Learning techniques, specifically Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the form of a grayscale image, were generated. 1458 convolutional neural networks with...
-
Multi-task Video Enhancement for Dental Interventions
PublikacjaA microcamera firmly attached to a dental handpiece allows dentists to continuously monitor the progress of conservative dental procedures. Video enhancement in video-assisted dental interventions alleviates low-light, noise, blur, and camera handshakes that collectively degrade visual comfort. To this end, we introduce a novel deep network for multi-task video enhancement that enables macro-visualization of dental scenes. In particular,...
-
Vehicle detector training with labels derived from background subtraction algorithms in video surveillance
PublikacjaVehicle detection in video from a miniature station- ary closed-circuit television (CCTV) camera is discussed in the paper. The camera provides one of components of the intelligent road sign developed in the project concerning the traffic control with the use of autonomous devices being developed. Modern Convolutional Neural Network (CNN) based detectors need big data input, usually demanding their manual labeling. In the presented...
-
Matrix elements for spin-orbit couplings in KRb
PublikacjaIn response to the need to investigate and create a reliable dataset of spin-orbit coupling matrix elements, we have extended our recent work in which we presented results for the potential energy curves and permanent and transition dipole moments in KRb. This paper presents 190 allowed spin-orbit couplings between 30 singlet and triplet +, , and electronic states of the KRb molecule. These results are crucial for accurately interpreting...
-
Optimized Computational Intelligence Model for Estimating the Flexural Behavior of Composite Shear Walls
PublikacjaThis article presents a novel approach to estimate the flexural capacity of reinforced concrete-filled composite plate shear walls using an optimized computational intelligence model. The proposed model was developed and validated based on 47 laboratory data points and the Transit Search (TS) optimization algorithm. Using 80% of the experimental dataset, the optimized model was selected by determining the unknown coefficients of...
-
Pursuing the Deep-Learning-Based Classification of Exposed and Imagined Colors from EEG
PublikacjaEEG-based brain-computer interfaces are systems aiming to integrate disabled people into their environments. Nevertheless, their control could not be intuitive or depend on an active external stimulator to generate the responses for interacting with it. Targeting the second issue, a novel paradigm is explored in this paper, which depends on a passive stimulus by measuring the EEG responses of a subject to the primary colors (red,...
-
Areas of Updraft Air Motion in an Idealised Weather Research and Forecasting Model Simulation of Atmospheric Boundary Layer Response to Different Floe Size Distributions
PublikacjaPresented dataset is part of a numerical modelling study focusing on the analysis of the influence of sea ice floe size distribution (FSD) on the horizontal and vertical structure of convection in the atmosphere. The total area and spatial arrangement of the up-drafts indicates that the FSD affects the total moisture content and the values of area averaged turbulent fluxes in the model domain. In fact, while convective updrafts...
-
A Triplet-Learnt Coarse-to-Fine Reranking for Vehicle Re-identification
PublikacjaVehicle re-identification refers to the task of matching the same query vehicle across non-overlapping cameras and diverse viewpoints. Research interest on the field emerged with intelligent transportation systems and the necessity for public security maintenance. Compared to person, vehicle re-identification is more intricate, facing the challenges of lower intra-class and higher inter-class similarities. Motivated by deep...
-
Intracranial electrophysiological recordings from the human brain during memory tasks with pupillometry
PublikacjaData comprise intracranial EEG (iEEG) brain activity represented by stereo EEG (sEEG) signals, recorded from over 100 electrode channels implanted in any one patient across various brain regions. The iEEG signals were recorded in epilepsy patients (N=10) undergoing invasive monitoring and localization of seizures when they were performing a battery of four memory tasks lasting approx. 1 hour in total. Gaze tracking on the task...
-
Improving Traffic Light Recognition Methods using Shifting Time-Windows
PublikacjaWe propose a novel method of improving algorithms recognizing traffic lights in video sequences. Our focus is on algorithms for applications which notify the driver of a light in sight. Many existing methods process images in the recording separately. Our method bases on the observation that real-life videos depict underlying continuous processes. We named our method FSA (Frame Sequence Analyzed). It is applicable for any underlying...
-
Improving methods for detecting people in video recordings using shifting time-windows
PublikacjaWe propose a novel method for improving algorithms which detect the presence of people in video sequences. Our focus is on algorithms for applications which require reporting and analyzing all scenes with detected people in long recordings. Therefore one of the target qualities of the classification result is its stability, understood as a low number of invalid scene boundaries. Many existing methods process images in the recording...
-
Investigating Feature Spaces for Isolated Word Recognition
PublikacjaThe study addresses the issues related to the appropriateness of a two-dimensional representation of speech signal for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and time-frequency signal representation converted to the investigated feature spaces. In particular, waveforms and fractal dimension features of the signal were chosen for the time domain, and...