Wyniki wyszukiwania dla: NONUNIFORM COMPRESSION MODIFIED COUPLE STRESS THEORY S-FSDT
-
Buckling Analysis of a Micro Composite Plate with Nano Coating Based on the Modified Couple Stress Theory
PublikacjaThe present study investigates the buckling of a thick sandwich plate under the biaxial non-uniform compression using the modified couple stress theory with various boundary conditions. For this purpose, the top and bottom faces are orthotropic graphene sheets and for the central core the isotropic soft materials are investigated. The simplified first order shear deformation theory (S-FSDT) is employed and the governing differential...
-
Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory
PublikacjaThis paper studies the electro-mechanical shear buckling analysis of piezoelectric nanoplate using modified couple stress theory with various boundary conditions.In order to be taken electric effects into account, an external electric voltage is applied on the piezoelectric nanoplate. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using...
-
Analytical predictions for the buckling of a nanoplate subjected to non-uniform compression based on the four-variable plate theory
PublikacjaIn the present study, the buckling analysis of the rectangular nanoplate under biaxial non-uniform compression using the modified couple stress continuum theory with various boundary conditions has been considered. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using the Hamilton’s principle. An analytical approach has been applied to obtain...
-
On the effective properties of foams in the framework of the couple stress theory
PublikacjaIn the framework of the couple stress theory, we discuss the effective elastic properties of a metal open-cell foam. In this theory, we have the couple stress tensor, but the microrotations are fully described by displacements. To this end, we performed calculations for a representative volume element which give the matrices of elastic moduli relating stress and stress tensors with strain and microcurvature tensors.
-
Ellipticity in couple-stress elasticity
PublikacjaWe discuss ellipticity property within the linear couple-stress elasticity. In this theory, there exists a deformation energy density introduced as a function of strains and gradient of macrorotations, where the latter are expressed through displacements. So the couple-stress theory could be treated as a particular class of strain gradient elasticity. Within the micropolar elasticity, the model is called Cosserat pseudocontinuum...
-
Multiple reference frame theory in the synchronous generator model considering harmonic distortions caused by nonuniform pole shoe saturation
PublikacjaThe paper describes a synchronous generator model developed based on the multiple reference frame theory. The main physical phenomena included in the model are the machine armature non-sinusoidal voltage waveform and the influence of armature current in load conditions on the armature voltage waveform higher harmonic components. The modified multiple reference frame theory model is proposed. In this modified theory model the field...
-
Study of Slip Effects in Reverse Roll Coating Process Using Non-Isothermal Couple Stress Fluid
PublikacjaThe non-isothermal couple stress fluid inside a reverse roll coating geometry is considered. The slip condition is considered at the surfaces of the rolls. To develop the flow equations, the mathematical modelling is performed using conservation of momentum, mass, and energy. The LAT (lubrication approximation theory) is employed to simplify the equations. The closed form solution for velocity, temperature, and pressure gradient...
-
Mixed 4-node shell element with assumed strain and stress in 6-parameter theory
PublikacjaWe propose a mixed hybrid 4-node shell elements based on Hu-Washizu principle. Apart from displacements both strains and stress fields are treated as independent fields. The element is derived in the framework of a general nonlinear 6-field shell theory with drilling rotation which is dedicated to the analysis of multifold irregular shells with intersections. The novelty of the presented results stems from the fact that the measures...
-
Mixed 4-node shell element with assumed strain and stress in 6-parameter theory
PublikacjaWe propose a mixed hybrid 4-node shell elements based on Hu-Washizu principle. Apart from displacements both strains and stress fields are treated as independent fields. The element is derived in the framework of a general nonlinear 6-field shell theory with drilling rotation which is dedicated to the analysis of multifold irregular shells with intersections. The novelty of the presented results stems from the fact that the measures...
-
HYGRO-MAGNETIC VIBRATION OF THE SINGLE-WALLED CARBON NANOTUBE WITH NONLINEAR TEMPERATURE DISTRIBUTION BASED ON A MODIFIED BEAM THEORY AND NONLOCAL STRAIN GRADIENT MODEL
PublikacjaIn this study, vibration analysis of single-walled carbon nanotube (SWCNT) has been carried out by using a refined beam theory, namely one variable shear deformation beam theory. This approach has one variable lesser than a contractual shear deformation theory such as first-order shear deformation theory (FSDT) and acts like classical beam approach but with considering shear deformations. The SWCNT has been placed in an axial or...
-
Equivalent 4-node enhanced assumed strain and hybrid stress shell elements in 6-parameter theory
PublikacjaWe discuss the equivalence of semi-enhanced assumed strain (EAS) and semi-hybrid stress (SEM) shell finite elements. We use the general nonlinear 6-field shell theory with kinematics composed of generalized displacements composed of the translation field and the rotation field. Due to the presence of rotation tensor the elements have naturally six nodal engineering degrees of freedom. We propose interpolation for a strain field...
-
The concept of research on ecological, energy and reliability effects of modified marine fuel oils application to supply compression-ignition engines in real conditions
PublikacjaWithin the article, basic assumptions of the research project financed by Regional Fund for Environmental Protection and Water in Gdansk were described. The project concerns the experimental investigations carried out on laboratory compression-ignition engine in conditions of its supply with a non-standard marine fuel oil. Configuration and measuring capability of laboratory test bed presently being constructed were introduced....
-
Structure Analysis of the Modified Cast Metal Matrix Composites by Use of the Rve Theory
Publikacja -
NON-LINEAR MASTIC CHARACTERISTICS BASED ON THE MODIFIED MSCR (MULTIPLE STRESS CREEP RECOVERY) TEST
PublikacjaMastic containing asphalt in its composition is an example of a viscoelastic material. It is an effective binder in asphalt. It consists of a filler (<0.063 mm) and asphalt mixed in the right proportions. Just like in asphalt, its response depends on the temperature level, the load and stress time. Changing the stress stiffness of the mastic affects the non-linear course of the stress-strain relationship. Modelling of the non-linear...
-
Determination of the thermal conductivity of material dividing the metallic core elements of the bi-calorimeter using modified theory
PublikacjaW pracy przedstawiono zmodyfikowaną teorię bikalorymetru z dzielonym metalowym rdzeniem. Pomiędzy dwiema częściami rdzenia umieszczano próbki badanego ciała stałego lub gazu. Ogrzewano jedną stronę rdzenia. Mierzono temperaturę obu części rdzenia w funkcji czasu. Uzyskane wyniki umożliwiły wyznaczenie różnicy temperatur i strumienia ciepła, przepływającego przez próbkę. Z zastosowaniem prawa Fouriera obliczano współczynnik przewodności...
-
Temperature influences on shear stability of a nanosize plate with piezoelectricity effect
PublikacjaPurpose The purpose of this paper is to predict the mechanical behavior of a piezoelectric nanoplate under shear stability by taking electric voltage into account in thermal environment. Design/methodology/approach Simplified first-order shear deformation theory has been used as a displacement field. Modified couple stress theory has been applied for considering small-size effects. An analytical solution has been taken into account...
-
Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method
PublikacjaIn this paper, bending analysis of rectangular functionally graded (FG) nanoplates under a uniform transverse load has been considered based on the modified couple stress theory. Using Hamilton’s principle, governing equations are derived based on a higher-order shear deformation theory (HSDT). The set of coupled equations are solved using the dynamic relaxation (DR) method combined with finite difference (FD) discretization technique...
-
Saint-Venant torsion based on strain gradient theory
PublikacjaIn this study, the Saint-Venant torsion problem based on strain gradient theory is developed. A total form of Mindlin's strain gradient theory is used to acquire a general Saint-Venant torsion problem of micro-bars formulation. A new Finite Element formulation based on strain gradient elasticity theory is presented to solve the Saint-Venant torsion problem of micro-bars. Moreover, the problem is solved for both micro and macro...
-
Drilling couples and refined constitutive equations in the resultant geometrically non-linear theory of elastic shells
PublikacjaIt is well known that distribution of displacements through the shell thickness is non-linear, in general. We introduce a modified polar decomposition of shell deformation gradient and a vector of deviation from the linear displacement distribution. When strains are assumed to be small, this allows one to propose an explicit definition of the drilling couples which is proportional to tangential components of the deviation vector....
-
A novel one-variable first-order shear deformation theory for biaxial buckling of a size-dependent plate based on Eringen’s nonlocal differential law
PublikacjaPurpose – This paper aims to present a new one-variable first-order shear deformation theory (OVFSDT) using nonlocal elasticity concepts for buckling of graphene sheets. Design/methodology/approach – The FSDT had errors in its assumptions owing to the assumption of constant shear stress distribution along the thickness of the plate, even though by using the shear correction factor (SCF), it has been slightly corrected, the errors...
-
Electroelastic biaxial compression of nanoplates considering piezoelectric effects
PublikacjaIn the present theoretical work, it is assumed that a piezoelectric nanoplate is connected to the voltage meter which voltages have resulted from deformation of the plate due to in-plane compressive forces whether they are critical buckling loads or arbitrary forces. In order to derive governing equations, a simplified four-variable shear deformation plate theory has been employed using Hamilton’s principle and Von-Kármán...
-
Geometrically nonlinear FEM analysis of 6-parameter resultant shell theory based on 2-D Cosserat constitutive model
PublikacjaWe develop the elastic constitutive law for the resultant statically and kinematically exact, nonlinear, 6-parameter shell theory. The Cosserat plane stress equations are integrated through-the- thickness under assumption of the Reissner-Mindlin kinematics. The resulting constitutive equations for stress resultant and couple resultants are expressed in terms of two micropolar constants: the micropolar modulus Gc and the micropolar...
-
Bending and buckling formulation of graphene sheets based on nonlocal simple first-order shear deformation theory
PublikacjaThis paper presents a formulation based on simple first-order shear deformation theory (S-FSDT) for large deflection and buckling of orthotropic single-layered graphene sheets (SLGSs). The S-FSDT has many advantages compared to the classical plate theory (CPT) and conventional FSDT such as needless of shear correction factor, containing less number of unknowns than the existing FSDT and strong similarities with the CPT. Governing...
-
Electro-thermal buckling of elastically supported double-layered piezoelectric nanoplates affected by an external electric voltage
PublikacjaPurpose Thermal buckling of double-layered piezoelectric nanoplates has been analyzed by applying an external electric voltage on the nanoplates. The paper aims to discuss this issue. Design/methodology/approach Double-layered nanoplates are connected to each other by considering linear van der Waals forces. Nanoplates are placed on a polymer matrix. A comprehensive thermal stress function is used for investigating thermal buckling....
-
On time-dependent nonlinear dynamic response of micro-elastic solids
PublikacjaA new approach to the mechanical response of micro-mechanic problems is presented using the modified couple stress theory. This model captured micro-turns due to micro-particles' rotations which could be essential for microstructural materials and/or at small scales. In a micro media based on the small rotations, sub-particles can also turn except the whole domain rotation. However, this framework is competent for a static medium....
-
Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory
PublikacjaIn the present investigation, a new first-order shear deformation theory (OVFSDT) on the basis of the in-plane stability of the piezo-magnetoelectric composite nanoplate (PMEN) has been developed, and its precision has been evaluated. The OVFSDT has many advantages compared to the conventional first-order shear deformation theory (FSDT) such as needless of shear correction factors, containing less number of unknowns than the existing...
-
Michał Ryms dr hab. inż.
Osobydr hab. inż. Michał Ryms, fizyk, absolwent Politechniki Gdańskiej. Pracę doktorską obronił na Wydziale Chemicznym. Od 2011 roku pracuje w Katedrze Konwersji i Magazynowania Energii Politechniki Gdańskiej, obecnie na stanowisku profesora uczelni. Działalność naukowa obejmuje: zagadnienia związane z poprawą efektywności energetycznej oraz możliwości nowego zastosowania materiałów zmiennofazowych (PCM) głównie w budownictwie energooszczędnym...
-
FEM analysis of composite materials failure in nonlinear six field shell theory
PublikacjaThe monography deals with the problem of failure initiation in thin laminated composites. Known techniques of laminate structures modelling are briefly characterised. Eventually, shell based approach is chosen for the purpose of the description of the composite structures behaviour, as it predicts their deformation and states of stress effectively in a global sense. The nonlinear six parameter shell theory (6p theory) with asymmetric...
-
Estimation of Failure Initiation in Laminated Composites by means of Nonlinear Six-Field Shell Theory and FEM
PublikacjaThe monography deals with the problem of failure initiation in thin laminated composites. Known techniques of laminate structures modelling are briefly characterised. Eventually, shell based approach is chosen for the purpose of the description of the composite structures behaviour, as it predicts their deformation and states of stress effectively in a global sense. The nonlinear six parameter shell theory (6p theory) with asymmetric...
-
Nieliniowa statyka 6-parametrowych powłok sprężysto plastycznych. Efektywne obliczenia MES
PublikacjaGłównym zagadnieniem omawianym w monografii jest sformułowanie sprężysto-plastycznego prawa konstytutywnego w nieliniowej 6-parametrowej teorii powłok. Wyróżnikiem tej teorii jest występujący w niej w naturalny sposób tzw. stopień 6 swobody, czyli owinięcie (drilling rotation). Podstawowe założenie pracy to przyjęcie płaskiego stanu naprężenia uogólnionego na ośrodek typu Cosseratów. Takie podejście stanowi oryginalny aspekt opracowania....
-
Local buckling of compressed flange of cold-formed channel members made of aluminum alloy
PublikacjaThe paper deals with local buckling of a compressed single flange of thin-walled channel cold- formed columns and beams made of aluminum alloy. Material is described by means of the Ramberg-Osgood constitutive equation. Axial compression of the columns and beams undergoing bending is taken into consid- eration. A simple model of the member flange in the form a long beam elastically connected to the web is used to find the critical...
-
Analiza i ocena poprawności działania węzła tarcia w aspekcie II zasady termodynamiki
PublikacjaW artykule przedstawiono autorską metodę sprawdzania poprawności działania węzła tarcia traktowanego jako układ tribologiczny w aspekcie II zasady termo-dynamiki na podstawie analizy i oceny wyników badań laboratoryjnych wykonanych na stanowisku badawczym. Jako stanowisko wykorzystany został zmodyfikowany węzeł tarcia aparatu czterokulowego T-02. Zaprezentowano algorytm, według którego zostały wykonane badania empiryczne. Wykazano,...
-
Central-force decomposition of spline-based modified embedded atom method potential
PublikacjaCentral-force decompositions are fundamental to the calculation of stress fields in atomic systems by means of Hardy stress. We derive expressions for a central-force decomposition of the spline-based modified embedded atom method (s-MEAM) potential. The expressions are subsequently simplified to a form that can be readily used in molecular-dynamics simulations, enabling the calculation of the spatial distribution of stress in...
-
Validation of lumbar spine finite element model
Dane BadawczeThe functional biomechanics of the lumbar spine have been better understood by finite element method (FEM) simulations. However, there are still areas where the behavior of soft tissues can be better modeled or described in a different way. The purpose of this research is to develop and validate a lumbar spine section intended for biomechanical research....
-
Nonlinear free and forced vibrations of a dielectric elastomer-based microcantilever for atomic force microscopy
PublikacjaThe majority of atomic force microcode (AFM) probes work based on piezoelectric actuation. However, some undesirable phenomena such as creep and hysteresis may appear in the piezoelectric actuators that limit their applications. This paper proposes a novel AFM probe based on dielectric elastomer actuators (DEAs). The DE is modeled via the use of a hyperelastic Cosserat model. Size effects and geometric nonlinearity are included...
-
A procedure for elastoplastic hardening function identification.
PublikacjaThe inverse analysis method for identifying a nonlinear hardening function,which governs a plastic yielding of soil and rock materials in the framework of elastoplastic theory is presented. A concept of two stage finite element based on spatial discretization of computational space and hardening function space is introduced. The proposed inverse analysis can be classified as the output least squares method. The Levenberg Marquard...
-
Recent Achievements in Constitutive Equations of Laminates and Functionally Graded Structures Formulated in the Resultant Nonlinear Shell Theory
PublikacjaThe development of constitutive equations formulated in the resultant nonlinear shell theory is presented. The specific features of the present shell theory are drilling rotation naturally included in the formulation and asymmetric measures of strains and stress resultants. The special attention in the chapter is given to recent achievements: progressive failure analysis of laminated shells and elastoplastic constitutive relation...
-
Examination of selected failure criteria with asymmetric shear stresses in the collapse analysis of laminated shells
PublikacjaThe paper is concerned with failure analysis of composite shells performed with the usage of the nonlinear 6‐parameter shell theory with drilling rotation degree of freedom. This special theory embodies naturally unlim-ited translations and rotations and is suitable for analysis of irregular shells for instance with various, partic-ularly orthogonal, intersections. The presence of the drilling rotation is inherently accompanied...
-
Assessment of Tensile Strength Reserve of Asphalt Mixtures at Low Temperatures
PublikacjaDuring winter conditions, low-temperature cracks develop at the surface of the asphalt pavement when tensile thermal stress induced in the asphalt layer during cooling equals and exceeds the tensile strength of the material. The paper presents the results of tensile strength reserve assessment of asphalt mixtures with neat and SBS-polymer modified bitumen application. The tensile strength reservewas calculated as difference between...
-
The Dominant Influence of Plastic Deformation Induced Residual Stress on the Barkhausen Effect Signal in Martensitic Steels
PublikacjaThe paper presents the results of investigation of the influence of plastic deformation on the magnetic properties of martensitic steel (P91 grade). The properties of the hysteresis loops as well as of the Barkhausen effect (BE) signal are analysed for both tensile and compressive loading up to ε = 10% of plastic deformation. The choice of the steel and of the deformation range is unique, since for such combination one can expect...
-
Thermal Buckling Analysis of Circular Bilayer Graphene sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics
PublikacjaIn this article, the thermal buckling behavior of orthotropic circular bilayer graphene sheets embedded in the Winkler–Pasternak elastic medium is scrutinized. Using the nonlocal elasticity theory, the bilayer graphene sheets are modeled as a nonlocal double–layered plate that contains small scale effects and van der Waals (vdW) interaction forces. The vdW interaction forces between the layers are simulated as a set of linear springs...
-
On refined constitutive equations in the six-field theory of elastic shells
PublikacjaWithin the resultant six-field shell theory, the second approximation to the complementary energy density of an isotropic elastic shell undergoing small strains is constructed. In this case, the resultant drilling couples are expressed explicitly by the stress resultants and stress couples as well as by amplitudes of the quadratic and cubic distributions of an intrinsic deviation vector. The refined 2D strain-stress and stress-strain...
-
Comparison of different one-parameter damage laws and local stress-strain approaches in multiaxial fatigue life assessment of notched components
PublikacjaThis paper aims to compare the predictive capabilities of different one-parameter damage laws and local stress-strain approaches to assess the fatigue lifetime in notched components subjected to proportional bending-torsion loading. The tested fatigue damage parameters are defined using well-known stress-based, strain-based, SWT-based and energy-based relationships. Multiaxial cyclic plasticity at the notch-controlled process zone...
-
Refined theoretical study of radiative association: Cross sections and rate constants for the formation of SiN
PublikacjaRadiative association of silicon mononitride (SiN) in its two lowest molecular electronic states is studied through quantum and classical dynamics. Special attention is paid to the behavior of the cross section at high collision energies. A modified expression for the semiclassical cross section is presented which excludes transitions to continuum states. This gives improved agreement with quantum mechanical perturbation theory...
-
rigid polyurethane foams modified with selected nanofillers
PublikacjaThe nanofillers: natural montmoryllonite (MMT) - Bentonite, natural MMT modified with a quaternary ammonium salt - Cloisite30B, has been used in rigid polyurethane foams (PUFs). The influence of fillers amounts on processing parameters, physical-mechanical properties (density, water absorption, brittleness and compression strength) and thermal properties (thermal stability, fire behaviours) of such foams has been analysed. The...
-
Nonlinear FEM 2D failure onset prediction of composite shells based on 6-parameter shell theory
PublikacjaWithin the framework of the nonlinear 6-parameter shell theory with the drilling rotation and asymmetric stress measures, the modifications of Tsai-Wu and Hashin laminate failure initiation criteria are proposed. These improvements enable to perform first ply failure estimations taking into account the non-symmetric stress measures. In order to check the validity of the proposed criteria, finite element analyses are performed with...
-
Stability analysis of nanobeams in hygrothermal environment based on a nonlocal strain gradient Timoshenko beam model under nonlinear thermal field
PublikacjaThis article is dedicated to analyzing the buckling behavior of nanobeam subjected to hygrothermal environments based on the principle of the Timoshenko beam theory. The hygroscopic environment has been considered as a linear stress field model, while the thermal environment is assumed to be a nonlinear stress field based on the Murnaghan model. The size-dependent effect of the nanobeam is captured by the nonlocal strain gradient...
-
Rigid polyurethane foams modified with selected flame retardants
PublikacjaThe flame retardants: expandable graphite, triethylphosphatehas been used in rigid polyurethane foams (PUFs). The influence of fillers amounts on processing parameters, physical-mechanical properties (compression strength, density, water absorption, brittleness)and thermal properties (thermal stability) of such foams has been analyzed.The gel, cram and rise time for PUFs modified with flame retardant has been observed during synthesis...
-
Examination of advanced isotropic constitutive laws under complex stress states in plain and reinforced concrete specimens
PublikacjaThe performance of advanced isotropic constitutive laws under complex stress states in plain and reinforced concrete specimens is investigated. Three different formulations are chosen: original Mazars model, Mazars mi model and model proposed by Pereira and coworkers. The degradation of the material in all formulations is described via a single variable, but a strain/stress state is taken into account via quite sophisticated relationships....
-
Experimental observations on the creep behaviour of frozen soil
PublikacjaConstitutive models in the literature for creep of frozen soil are based on the direct use of time counted from the onset of creep. An explicit time dependence in a constitutive equation violates the principles of rational mechanics. No change in stress or temperature is allowed for during creep, using the time-based formulations. Moreover, the existing descriptions need much verification and improvement on the experimental side...