Filtry
wszystkich: 1031
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: RANDOM FOREST REGRESSION
-
Prediction of skin color, tanning and freckling from DNA in Polish population: linear regression, random forest and neural network approaches
Publikacja -
A Robust Random Forest Model for Classifying the Severity of Partial Discharges in Dielectrics
PublikacjaPartial Discharges (PDs) are a common source of degradation in electrical assets. It is essential that the extent of the deterioration level of insulating medium is correctly identified, to optimize maintenance schedules and prevent abrupt power outages. Temporal PD signals received from damaged insulation, collected through the IEC-60270 method is the gold standard for PD detection. Temporal signals may be transformed to the frequency...
-
Random Forest Based Power Sustainability and Cost Optimization in Smart Grid
Publikacja -
Random forest based power sustainability and cost optimization in smart grid
Publikacja -
Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier
PublikacjaIn recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia....
-
Forecasting energy consumption and carbon dioxide emission of Vietnam by prognostic models based on explainable machine learning and time series
PublikacjaThis study assessed the usefulness of algorithms in estimating energy consumption and carbon dioxide emissions in Viet- nam, in which the training dataset was used to train the models linear regression, random forest, XGBoost, and AdaBoost, allowing them to comprehend the patterns and relationships between population, GDP, and carbon dioxide emissions, energy consumption. The results revealed that random forest, XGBoost, and AdaBoost...
-
A Machine Learning Approach for Estimating Overtime Allocation in Software Development Projects
PublikacjaOvertime planning in software projects has traditionally been approached with search-based multi-objective optimization algorithms. However, the explicit solutions produced by these algorithms often lack applicability and acceptance in the software industry due to their disregard for project managers' intuitive knowledge. This study presents a machine learning model that learns the preferred overtime allocation patterns from solutions...
-
Efficiency of Artificial Intelligence Methods for Hearing Loss Type Classification: an Evaluation
PublikacjaThe evaluation of hearing loss is primarily conducted by pure tone audiometry testing, which is often regarded as golden standard for assessing auditory function. If the presence of hearing loss is determined, it is possible to differentiate between three types of hearing loss: sensorineural, conductive, and mixed. This study presents a comprehensive comparison of a variety of AI classification models, performed on 4007 pure tone...
-
Regression points in non-intrusive polynomial chaos expansion method and D-optimal design
PublikacjaThe paper addresses selected issues of uncertainty quantification in the modelling of a system containing surgical mesh used in ventral hernia repair. Uncertainties in the models occur e.g. due to variability of abdominal wall properties among others. In order to include them, a non-intrusive regression-based polynomial chaos expansion method is employed. Its accuracy depends on the choice of regression points. In the study a relation...
-
Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach
PublikacjaTreatment of municipal wastewater to meet the stringent effluent quality standards is an energy-intensive process and the main contributor to the costs of wastewater treatment plants (WWTPs). Analysis and prediction of energy consumption (EC) are essential in designing and operating sustainable energy-saving WWTPs. In this study, the effect of wastewater, hydraulic, and climate-based parameters on the daily consumption of EC by...
-
News that Moves the Market: DSEX-News Dataset for Forecasting DSE Using BERT
PublikacjaStock market is a complex and dynamic industry that has always presented challenges for stakeholders and investors due to its unpredictable nature. This unpredictability motivates the need for more accurate prediction models. Traditional prediction models have limitations in handling the dynamic nature of the stock market. Additionally, previous methods have used less relevant data, leading to suboptimal performance. This study...
-
Fracture mechanics model of cutting power versus widespread regression equations while wood sawing with circular saw blades
PublikacjaA comparison of the theoretical cutting power consumption results forecasted with the model (FM_CM model) which include work of separation (fracture toughness) in addition to plasticity and friction, and two widespread regression equations while wood sawing with circular saw blades has been described. in and cutting power consumption forecasted. In computations of the cutting power consumption during rip sawing of Scots pine wood...
-
Statistics 2022_23
Kursy Online1.Elements of probability. The axioms of the probability theory 2. Random variables and their distributions. Discrete and continuous random variables 3. Parameters of random variables: expected value, moments 4. Selected distributions of random variables (Bernoulli, Poison, Gaussian) 5.The distribution in the sample. Visualisation by histograms 6. Measures of statistical location: arithmetic mean, median, quantiles. 7. Measures...
-
Study of various machine learning approaches for Sentinel-2 derived bathymetry
PublikacjaIn recent years precise and up-to-date information regarding seabed depth has become more and more important for companies and institutions that operate on coastlines. While direct, in-situ measurements are performed regularly, they are expensive, time-consuming and impractical to be performed in short time intervals. At the same time, an ever-increasing amount of satellite imaging data becomes available. With these images, it...
-
Intelligent Decision Forest Models for Customer Churn Prediction
PublikacjaCustomer churn is a critical issue impacting enterprises and organizations, particularly in the emerging and highly competitive telecommunications industry. It is important to researchers and industry analysts interested in projecting customer behavior to separate churn from non‐churn consumers. The fundamental incentive is a firm’s intent desire to keep current consumers, along with the exorbitant expense of gaining new ones....
-
A machine learning approach to classifying New York Heart Association (NYHA) heart failure
PublikacjaAccording to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional...
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublikacjaThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
Vehicle classification based on soft computing algorithms
PublikacjaExperiments and results regarding vehicle type classification are presented. Three classes of vehicles are recognized: sedans, vans and trucks. The system uses a non-calibrated traffic camera, therefore no direct vehicle dimensions are used. Various vehicle descriptors are tested, including those based on vehicle mask only and those based on vehicle images. The latter ones employ Speeded Up Robust Features (SURF) and gradient images...
-
Basic evaluation of limb exercises based on electromyography and classification methods
PublikacjaSymptoms caused by cerebral palsy or stroke deprive a person partially or even completely of his ability to move. Nowadays we can observe more technologically advanced rehabilitation devices which incorporate biofeedback into the process of rehabilitation of such people. However, there is still a lack of devices that would analyse, assess, and control (independently or with limited support) specialised movement exercises. Here...
-
Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data
PublikacjaThis paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...
-
Personal bankruptcy prediction using machine learning techniques
PublikacjaIt has become crucial to have an early prediction model that provides accurate assurance for users about the financial situation of consumers. Recent studies have focused on predicting corporate bankruptcies and credit defaults, not personal bankruptcies. Due to this situation, the present study fills the literature gap by comparing different machine learning algorithms to predict personal bankruptcy. The main objective of the...
-
Microencapsulation of fish oil – determination of optimal wall material and encapsulation methodology
PublikacjaFor the first time, we present a meta-analysis of experimental and literature data to determine which microencapsulation methodology, and which wall material are best suited to protect fish oil. Our analysis covered a period of several decades of research (1984–2018). The analysis was conducted on 196 literature data-points, and 16 data-points determined experimentally for this publication. PLS regression was used to determine...
-
Forest management
Kursy OnlineThe last ice age ended in Scandinavia about 15 000 years ago. The land was gradually occupied by present tree species. Human settlement followed the vegetation. The first forest uses were hunting and gathering. Animal husbandry and forest grazing came later. Shifting cultivation was a wide spread form of agriculture, especially in Sweden and Finland. Wood was first used for domestic purposes and for construction, In the 18th century,...
-
Novel analytical method for detection of orange juice adulteration based on ultra-fast gas chromatography
PublikacjaThe food authenticity assessment is an increasingly important issue in food quality and safety. The application of an electronic nose based on ultra-fast gas chromatography technique enables rapid analysis of the volatile compounds from food samples. Due to the fact that this technique provides chemical profiling of natural products, it can be a powerful tool for authentication in combination with chemometrics. In this article,...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublikacjaCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
Integrated model for the fast assessment of flood volume: Modelling – management, uncertainty and sensitivity analysis
PublikacjaThe specific flood volume is an important criterion for assessing the performance of sewage networks. It has been shown that its value is greatly influenced by the layout of the sewers in the catchment area, which is usually expressed by a fractal dimension. Currently, only mechanistic models (such as SWMM) enable the determination of the impact of the layout of the sewers on flooding volume, but they require additional and robust...
-
Anomaly Detection in Railway Sensor Data Environments: State-of-the-Art Methods and Empirical Performance Evaluation
PublikacjaTo date, significant progress has been made in the field of railway anomaly detection using technologies such as real-time data analytics, the Internet of Things, and machine learning. As technology continues to evolve, the ability to detect and respond to anomalies in railway systems is once again in the spotlight. However, railway anomaly detection faces challenges related to the vast infrastructure, dynamic conditions, aging...
-
A Meta-Analysis of Pulse Arrival Time Based Blood Pressure Estimation
PublikacjaThe paper presents a preliminary meta-analysis of the sample correlation between pulse arrival time (PAT) and blood pressure (BP). The aim of the study was to verify sample correlation coefficient between PAT and BP using an affine model BP = a · P AT + b for systolic and diastolic blood pressure. The databases included in the search were the IEEE Xplore Digital Library, Springer Link and Google Scholar. Only papers from 2005 to...
-
Offshore benthic habitat mapping based on object-based image analysis and geomorphometric approach. A case study from the Slupsk Bank, Southern Baltic Sea
PublikacjaBenthic habitat mapping is a rapidly growing field of underwater remote sensing studies. This study provides the first insight for high-resolution hydroacoustic surveys in the Slupsk Bank Natura 2000 site, one of the most valuable sites in the Polish Exclusive Zone of the Southern Baltic. This study developed a quick and transparent, automatic classification workflow based on multibeam echosounder and side-scan sonar surveys to...
-
Comparison of Classification Methods for EEG Signals of Real and Imaginary Motion
PublikacjaThe classification of EEG signals provides an important element of brain-computer interface (BCI) applications, underlying an efficient interaction between a human and a computer application. The BCI applications can be especially useful for people with disabilities. Numerous experiments aim at recognition of motion intent of left or right hand being useful for locked-in-state or paralyzed subjects in controlling computer applications....
-
Modelling of Abdominal Wall Under Uncertainty of Material Properties
PublikacjaThe paper concerns abdominal wall modelling. The accurate prediction and simulation of abdominal wall mechanics are important in the context of optimization of ventral hernia repair. The shell Finite Element model is considered, as the one which can be used in patient-specific approach due to relatively easy geometry generation. However, there are uncertainties in this issue, e.g. related to mechanical properties since the properties...
-
Sampling-based novel heterogeneous multi-layer stacking ensemble method for telecom customer churn prediction
PublikacjaIn recent times, customer churn has become one of the most significant issues in business-oriented sectors with telecommunication being no exception. Maintaining current customers is particularly valuable due to the high degree of rivalry among telecommunication companies and the costs of acquiring new ones. The early prediction of churned customers may help telecommunication companies to identify the causes of churn and design...
-
Soft Sensor Application in Identification of the Activated Sludge Bulking Considering the Technological and Economical Aspects of Smart Systems Functioning
PublikacjaThe paper presented the methodology for the construction of a soft sensor used for activated sludge bulking identification. Devising such solutions fits within the current trends and development of a smart system and infrastructure within smart cities. In order to optimize the selection of the data-mining method depending on the data collected within a wastewater treatment plant (WWTP), a number of methods were considered, including:...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublikacjaFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Application of multisensoral remote sensing data in the mapping of alkaline fens Natura 2000 habitat
PublikacjaThe Biebrza River valley (NE Poland) is distinguished by largely intact, highly natural vegetation patterns and very good conservation status of wetland ecosystems. In 20132014, studies were conducted in the upper Biebrza River basin to develop a remote sensing method for alkaline fen classification a protected Natura 2000 habitat (code 7230) using remote sensing technologies. High resolution airborne true colour (RGB) and...
-
Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance
PublikacjaWastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP...
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublikacjaNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
The Use of Ultra-Fast Gas Chromatography for Fingerprinting-Based Classification of Zweigelt and Rondo Wines with Regard to Grape Variety and Type of Malolactic Fermentation Combined with Greenness and Practicality Assessment
PublikacjaIn food authentication, it is important to compare different analytical procedures and select the best method. The aim of this study was to determine the fingerprints of Zweigelt and Rondo wines through headspace analysis using ultra-fast gas chromatography (ultra-fast GC) and to compare the effectiveness of this approach at classifying wines based on grape variety and type of malolactic fermentation (MLF) as well as its greenness...
-
Employing Subjective Tests and Deep Learning for Discovering the Relationship between Personality Types and Preferred Music Genres
PublikacjaThe purpose of this research is two-fold: (a) to explore the relationship between the listeners’ personality trait, i.e., extraverts and introverts and their preferred music genres, and (b) to predict the personality trait of potential listeners on the basis of a musical excerpt by employing several classification algorithms. We assume that this may help match songs according to the listener’s personality in social music networks....
-
Intracranial hemorrhage detection in 3D computed tomography images using a bi-directional long short-term memory network-based modified genetic algorithm
PublikacjaIntroduction: Intracranial hemorrhage detection in 3D Computed Tomography (CT) brain images has gained more attention in the research community. The major issue to deal with the 3D CT brain images is scarce and hard to obtain the labelled data with better recognition results. Methods: To overcome the aforementioned problem, a new model has been implemented in this research manuscript. After acquiring the images from the Radiological...
-
On the Role of Polarimetric Decomposition and Speckle Filtering Methods for C-Band SAR Wetland Classification Purposes
PublikacjaPrevious wetlands studies have thoroughly verified the usefulness of data from synthetic aperture radar (SAR) sensors in various acquisition modes. However, the effect of the processing parameters in wetland classification remains poorly explored. In this study, we investigated the influence of speckle filters and decomposition methods with different combinations of filter and decomposition windows sizes on classification accuracy....
-
Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data
PublikacjaWetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublikacjaMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Random Processes 2022/2023
Kursy OnlineThe e-learning course page for the purpose of the remote or hybrid learning for Random Processes.
-
Random Processes 2023/2024
Kursy OnlineThe e-learning course page for the purpose of the remote or hybrid learning for Random Processes.
-
Random Processes 2024/2025
Kursy OnlineThe e-learning course page for the purpose of the remote or hybrid learning for Random Processes.
-
Underground Water Level Prediction in Remote Sensing Images Using Improved Hydro Index Value with Ensemble Classifier
PublikacjaThe economic sustainability of aquifers across the world relies on accurate and rapid estimates of groundwater storage changes, but this becomes difficult due to the absence of insitu groundwater surveys in most areas. By closing the water balance, hydrologic remote sensing measures offer a possible method for quantifying changes in groundwater storage. However, it is uncertain to what extent remote sensing data can provide an...
-
An intelligent cellular automaton scheme for modelling forest fires
PublikacjaForest fires have devastating consequences for the environment, the economy and human lives. Understanding their dynamics is therefore crucial for planning the resources allocated to combat them effectively. In a world where the incidence of such phenomena is increasing every year, the demand for efficient and accurate computational models is becoming increasingly necessary. In this study, we perform a revision of an initial proposal...
-
Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets
PublikacjaThis paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of...
-
Empirical analysis of tree-based classification models for customer churn prediction
PublikacjaCustomer churn is a vital and reoccurring problem facing most business industries, particularly the telecommunications industry. Considering the fierce competition among telecommunications firms and the high expenses of attracting and gaining new subscribers, keeping existing loyal subscribers becomes crucial. Early prediction of disgruntled subscribers can assist telecommunications firms in identifying the reasons for churn and...