Filters
total: 4340
filtered: 3500
-
Catalog
Chosen catalog filters
displaying 1000 best results Help
Search results for: ACTIVE LEARNING ALGORITHM
-
Using similar classification tasks in feature extractor learning
PublicationThe article presents and experimentally verify the idea of automatic construction of feature extractors in classification problems. The extractors are created by genetic programming techniques using classification examples taken from other problems then the problem under consideration.
-
The role and construction of educational agents in distance learning environments
PublicationArtykuł przedstawia definicję oraz klasyfikację agentów edukacyjnych. Wskazuje typowe cele i zadania agentów, a także omawia schemat ich budowy i funkcjonowania. Wskazano także różnorodność możliwości, jakie stwarzają różne rodzaje agentów w procesie nauczania. W artykule opisano także wytworzony w ramach badań prototyp agenta WAS, którego zadaniem jest wspomaganie uczniów w zakresie pracy z materiałami edukacyjnymi.
-
IEEE 802.11 LAN capacity: incentives and incentive learning
PublicationPrzedstawiono matematyczny model zgodności motywacyjnej dla gier niekooperacyjnych wywiązujących się przy autonomicznym ustawianiu parametrów mechanizmu dostępu do medium transmisyjnego. Zaproponowano koncepcję przewidywania wyniku gry w zależności od stopnia wyrafinowania strategii terminala oraz jego możliwości energetycznych. Analiza symulacyjna potwierdziła dobrą wynikową wydajność sieci przy niewielu terminalach silnie uzależnionych...
-
IEEE 802.11 LAN capacity: incentives and incentive learning
PublicationMotywację stacji sieci lokalnej IEEE 802.11 do przeprowadzenia racjonalnego ataku na mechanizm MAC można wyrazić liczbowo jako punkt stały pewnego przekształcenia dwuwymiarowego. Model taki został następnie rozszerzony o możliwość stosowania przez stacje strategii wyrafinowanego przewidywania zachowań innych stacji. Pokazano, w jaki sposób wpływa to na przepustowość sieci i sprawiedliwość dostępu do medium transmisyjnego, uwzględniając...
-
AGAR a Microbial Colony Dataset for Deep Learning Detection
Publication -
Scent emitting multimodal computer interface for learning enhancement
PublicationKomputerowy interfejs aromatyczny stanowi ważne uzupełnienie procesu stymulacji polisensorycznej. Stymulacja ta odgrywa kluczową rolę w terapii i kształceniu dzieci z zaburzeniami rozwoju (np. w przypadku autyzmu czy ADHD). Opracowany interfejs może stać się elementem wyposażenia tzw. sal doświadczania świata, ale może być także stosowany niezależnie stanowiąc znaczące wzbogacenie komputerowych programów edukacyjnych. Dzięki możliwości...
-
PERFORMANCE COMPARISON OF MACHINE LEARNING ALGORITHMS FOR PREDICTIVE MAINTENANCE
Publication -
Machine Learning for Sensorless Temperature Estimation of a BLDC Motor
Publication -
MACHINE LEARNING SYSTEM FOR AUTOMATED BLOOD SMEAR ANALYSIS
PublicationIn this paper the authors propose a decision support system for automatic blood smear analysis based on microscopic images. The images are pre-processed in order to remove irrelevant elements and to enhance the most important ones - the healthy blood cells (erythrocytes) and the pathologic (echinocytes). The separated blood cells are analyzed in terms of their most important features by the eigenfaces method. The features are the...
-
Machine Learning Modelling and Feature Engineering in Seismology Experiment
Publication -
Machine learning applied to bi-heterocyclic drugs recognition
Publication -
Personal bankruptcy prediction using machine learning techniques
Publication -
Learning from examples with data reduction and stacked generalization
Publication -
Stacking-Based Integrated Machine Learning with Data Reduction
Publication -
Learning from the often-forgotten Jan Heweliusz disaster
PublicationPrzedstawiono konieczność przeprowadzenia badań nad zatonięciem promu Jan Heweliusz, którego katastrofa - w odróżnieniu od innych promów - została przemilczana i nie wywołała żadnych badań naukowych.
-
The use of machine learning for face regions detection in thermograms
PublicationThe aim of this study is to analyse the methods of detecting characteristic points of the face in thermographic images. As part of the implementation an extensive analysis of scientific publications covering similar issues both for the analysis of images made in visible light and thermographic images was carried out. On the basis of this analysis, 3 models were selected and then they were implemented and tested on the basis of...
-
MACHINE LEARNING–BASED ANALYSIS OF ENGLISH LATERAL ALLOPHONES
PublicationAutomatic classification methods, such as artificial neural networks (ANNs), the k-nearest neighbor (kNN) and selforganizing maps (SOMs), are applied to allophone analysis based on recorded speech. A list of 650 words was created for that purpose, containing positionally and/or contextually conditioned allophones. For each word, a group of 16 native and non-native speakers were audio-video recorded, from which seven native speakers’...
-
Classifying Emotions in Film Music - A Deep Learning Approach
PublicationThe paper presents an application for automatically classifying emotions in film music. A model of emotions is proposed, which is also associated with colors. The model created has nine emotional states, to which colors are assigned according to the color theory in film. Subjective tests are carried out to check the correctness of the assumptions behind the adopted emotion model. For that purpose, a statistical analysis of the...
-
Musical Instrument Identification Using Deep Learning Approach
PublicationThe work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata...
-
Endoscopy images classification with kernel based learning algorithms.
PublicationPrzedstawiono zastosowanie algorytmów opartych na wektorach wspierających zbudowanych na dwóch różnych funkcjach straty do klasyfikacji obrazów endoskopowych przełyku. Szczegółowo omówiono sposób ekstrakcji cech obrazów oraz algorytm klasyfikacji. Klasyfikator został zastosowany do problemu rozpoznawania zdjęć guzów złośliwych i łagodnych.
-
Machine learning system for estimating the rhythmic salience of sounds.
PublicationW artykule przedstawiono badania dotyczące wyszukiwania danych rytmicznych w muzyce. W pracy przedstawiono postać funkcji rankingujacej poszczególnych dźwięków frazy muzycznej. Opracowano metodę tworzenia wszystkich możliwych hierarchicznych struktur rytmicznych, zwanych hipotezami rytmicznymi. Otrzymane hipotezy są następnie porządkowane w kolejności malejącej wartości funkcji rankingującej, aby ustalić, która ze znalezionych...
-
E-learning w małych i średnich przedsiębiorstwach
PublicationW rozdziale przedstawiono podstawowych zagadnienia e-learningu w małych i średnich przedsiębiorstwach oraz przykłady realizowanych projektów.
-
E-learning course "International comparative studies on SMEs"
PublicationProjekt Leonardo da Vinci "International comparative studies and course development on SMEs" został zainspirowany poprzednim projektem LdV "A European Diploma in SME Management". Bazując na poprzednich doświadczeniach projektowych zaproponowano opracowanie struktur dla opisania narodowych systemów małych i średnich przedsiębiorstw (ang. SME Small Media Enterprises) przy wykorzystaniu dostępnych krajowych danych. Udowodniono, że...
-
Method for determining of shallow water depths based on data recorded by UAV/USV vehicles and processed using the SVR algorithm
PublicationBathymetric measurements in waters shallower than 1 m are necessary to monitor seafloor relief changes in the coastal zone. This is especially important for ensuring the safety of navigation, navigation efficiency, as well as during the design and monitoring of hydrotechnical structures. Therefore, the aim of this article is to present a method for determining of shallow water depths based on data recorded by Unmanned Aerial Vehicle...
-
Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study
PublicationPlain weave composite is a long-lasting type of fabric composite that is stable enough when being handled. Open-hole composites have been widely used in industry, though they have weak structural performance and complex design processes. An extensive number of material/geometry parameters have been utilized for designing these composites, thereby an efficient computational tool is essential for that purpose. Different Machine Learning...
-
Relay-aided Wireless Sensor Network Discovery Algorithm for Dense Industrial IoT utilizing ESPAR Antennas
PublicationIndustrial Internet of Things (IIoT) applicationsrequire reliable and efficient wireless communication. Assumingdense Wireless Sensor Networks (WSNs) operating in a harshenvironment, a concept of a Time Division Multiple Access(TDMA) based WSN enriched with Electronically SteerableParasitic Array Radiator (ESPAR) antennas is proposed andexamined in this work. The utilized...
-
Electrochemical simulation of metabolism for antitumor-active imidazoacridinone C-1311 and in silico prediction of drug metabolic reactions
PublicationThe metabolism of antitumor-active 5-diethylaminoethylamino-8-hydroxyimidazoacridinone (C-1311) has been investigated widely over the last decade but some aspects of molecular mechanisms of its metabolic transformation are still not explained. In the current work, we have reported a direct and rapid analytical tool for better prediction of C-1311 metabolism which is based on electrochemistry (EC) coupled on-line with electrospray...
-
Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various Machine learning techniques
PublicationMachine Learning (ML) method is widely used in engineering applications such as fracture mechanics. In this study, twenty different ML algorithms were employed and compared for the prediction of the fracture toughness and fracture load in modes I, II, and mixed-mode (I-II) of various materials, including fibre-reinforced concrete, cement mortar, sandstone, white travertine, marble, and granite. A set of 401 specimens of “Brazilian...
-
Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
PublicationPredicting the Maximum Interstory Drift Ratio (M-IDR) of Steel Moment-Resisting Frames (SMRFs) is a useful tool for designers to approximately evaluate the vulnerability of SMRFs. This study aims to explore supervised Machine Learning (ML) algorithms to build a surrogate prediction model for SMRFs to reduce the need for complex modeling. For this purpose, twenty well-known ML algorithms implemented in Python software are trained...
-
Multiple output differential OTA with linearizing bulk-driven active-error feedback loop for continuous-time filter applications
PublicationA CMOS circuit realization of a highly linear multiple-output differential operational transconductance amplifier (OTA) has been proposed. The presented approach exploits a differential pair as an input stage with both the gate and the bulk terminals as signal ports. For the proposed OTA, improved linearity is obtained by means of the active-error feedback loop operating at the bulk terminals of the input stage. SPICE simulations...
-
How does the Relationship Between the Mistakes Acceptance Component of Learning Culture and Tacit Knowledge-Sharing Drive Organizational Agility? Risk as a Moderator
PublicationChanges in the business context create the need to adjust organizational knowledge to new contexts to enable the organizational agile responses to secure competitiveness. Tacit knowledge is strongly contextual. This study is based on the assumption that business context determines tacit knowledge creation and acquisition, and thanks to this, the tacit knowledge-sharing processes support agility. Therefore, this study aims to expose...
-
Machine-Learning-Powered EM-Based Framework for Efficient and Reliable Design of Low Scattering Metasurfaces
PublicationPopularity of metasurfaces has been continuously growing due to their attractive properties including the ability to effectively manipulate electromagnetic (EM) waves. Metasurfaces comprise optimized geometries of unit cells arranged as a periodic lattice to obtain a desired EM response. One of their emerging application areas is the stealth technology, in particular, realization of radar cross section (RCS) reduction. Despite...
-
Efficient Gradient-Based Algorithm with Numerical Derivatives for Expedited Optimization of Multi-Parameter Miniaturized Impedance Matching Transformers
PublicationFull-wave electromagnetic (EM) simulation tools have become ubiquitous in the design of microwave components. In some cases, e.g., miniaturized microstrip components, EM analysis is mandatory due to considera¬ble cross-coupling effects that cannot be accounted for otherwise (e.g., by means of equivalent circuits). These effects are particularly pronounced in the structures in¬volving slow-wave compact cells and their numerical...
-
Energy Management for PV Powered Hybrid Storage System in Electric Vehicles Using Artificial Neural Network and Aquila Optimizer Algorithm
PublicationIn an electric vehicle (EV), using more than one energy source often provides a safe ride without concerns about range. EVs are powered by photovoltaic (PV), battery, and ultracapacitor (UC) systems. The overall results of this arrangement are an increase in travel distance; a reduction in battery size; improved reaction, especially under overload; and an extension of battery life. Improved results allow the energy to be used efficiently,...
-
Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach
PublicationTreatment of municipal wastewater to meet the stringent effluent quality standards is an energy-intensive process and the main contributor to the costs of wastewater treatment plants (WWTPs). Analysis and prediction of energy consumption (EC) are essential in designing and operating sustainable energy-saving WWTPs. In this study, the effect of wastewater, hydraulic, and climate-based parameters on the daily consumption of EC by...
-
Cost-Efficient Measurement Platform and Machine-Learning-Based Sensor Calibration for Precise NO2 Pollution Monitoring
PublicationAir quality significantly impacts human health, the environment, and the economy. Precise real-time monitoring of air pollution is crucial for managing associated risks and developing appropriate short- and long-term measures. Nitrogen dioxide (NO2) stands as a common pollutant, with elevated levels posing risks to the human respiratory tract, exacerbating respiratory infections and asthma, and potentially leading to chronic lung...
-
Application of response surface methodology to optimize solid-phase microextraction procedure for chromatographic determination of aroma-active monoterpenes in berries
PublicationMost of scientific papers concern the qualitative or semi-quantitative analysis of aroma-active terpenes in liquid food matrices. Therefore, the procedure based on solid-phase microextraction and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for determination of monoterpenes in fresh berries was developed. The optimal extraction conditions using divinylbenzene-carboxen-polydimethylsiloxane fiber...
-
A genetic algorithm application for automatic layout design of modular residential homes
Publication -
A Biased-Randomized Iterated Local Search Algorithm for Rich Portfolio Optimization
Publication -
Corrupted speech intelligibility improvement using adaptive filter based algorithm
PublicationA technique for improving the quality of speech signals recorded in strong noise is presented. The proposed algorithmemploying adaptive filtration is described and additional possibilities of speech intelligibility improvement arediscussed. Results of the tests are presented.
-
Performance evaluation of the parallel object tracking algorithm employing the particle filter
Publication -
Pareto Task Assignments by an Adaptive Quantum-based Evolutionary Algorithm AQMEA
PublicationW pracy scharakteryzowano state_of_the_art w zakresie kwantowych algorytmów ewolucyjnych. Scharakteryzowano zasady efektywnego projektowania tej klasy algorytmów genetycznych. Podano wyniki uzyskane za pomocą kwantowego algorytmu ewolucyjnego AQMEA w zakresie wyznaczanie przydziałów zadań optymalnych w sensie Pareto.
-
A fast algorithm for computing the flux around non-overlapping disks on the plane
Publication -
Optimal Power Flow Problem Using Particle Swarm Optimization Algorithm
Publication -
Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
PublicationGlobal sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based...
-
A note on polynomial algorithm for cost coloring of bipartite graphs with Δ ≤ 4
PublicationIn the note we consider vertex coloring of a graph in which each color has an associated cost which is incurred each time the color is assigned to a vertex. The cost of coloring is the sum of costs incurred at each vertex. We show that the minimum cost coloring problem for n-vertex bipartite graph of degree ∆≤4 can be solved in O(n^2) time. This extends Jansen’s result [K.Jansen,The optimum cost chromatic partition problem, in:...
-
Efficient analysis of waveguide componets using a hybrid PEE-FDFD algorithm.
PublicationZaproponowano przyspieszenie analizy podzespołów falowodowych poprzez połączenie metody różnic skończonych w dziedzinie częstotliwości FDFD oraz rozwinięcia w funkcje własne PEE. Proponowane sformułowanie pozwala jawnie zdefiniować operator macierzowy dla zadanego problemu. Proponowana technika została zaprezentowana zarówno dla problemów własnych jak i układów z pobudzeniem.
-
Innovative optimization algorithm of variable speed pumps in district heating systems.
PublicationW referacie przedstawiono innowacyjny algorytm matematyczny optymalizacji pracy pomp zmienno prędkościowych w systemach ciepłowniczych. Algorytm wykorzystuje procedurę iterecyjnego wyznaczania parametrów pracy pomp, których charakterystyki są linearyzowane odcinkami w układzie dwóch współrzędnych. Do rozwiązania modelu całkowitoliczbowego zaproponowano wykorzystanie systemu GAMS. W pracy przedstawiono podstawy metodologiczne i...
-
A multirate approach to DDS algorithm versus Taylor-series expansion technique.
PublicationPokazano, że cyfrowy generator syntezy bezpośredniej (DDS) można traktować jako algorytm wieloszybkościowy. Rozważono i porównano dwa sposoby wykorzystania pamięci. W pierwszym z nich zastosowano filtr ułamkowo-opóźniający o strukturze Farrowa. Drugie podejście oparto na rotacji fazy na podstawie rozwinięcia w szereg Taylora. Eksperymenty pokazują, że za pomocą obu tych sposobów, dla sinusoidy zespolonej generowanej w kwadraturowym...
-
Estimation of musical sound separation algorithm effectiveness employing neural networks.
PublicationŚlepa separacja dźwięków sygnałów muzycznych zawartych w zmiksowanym materiale jest trudnym zadaniem. Jest to spowodowane tym, że dźwięki znajdujące się w relacjach harmonicznych mogą zawierać kolidujące składowe sinusoidalne (składowe harmoniczne). Ewaluacja wyników separacji jest również problematyczna, gdyż analiza błędu energetycznego często nie odzwierciedla subiektywnej jakości odseparowanych sygnałów. W tej publikacji zostały...